|
from opencompass.models import HuggingFaceCausalLM |
|
from opencompass.models.turbomind import TurboMindModel |
|
from opencompass.runners import SlurmSequentialRunner |
|
from opencompass.partitioners import SizePartitioner, NaivePartitioner |
|
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask |
|
|
|
from mmengine.config import read_base |
|
with read_base(): |
|
|
|
from .datasets.needlebench.needlebench_4k.needlebench import needlebench_datasets |
|
from .summarizers.needlebench import needlebench_4k_summarizer as summarizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets = sum([v for k, v in locals().items() if ('datasets' in k)], []) |
|
|
|
hf_internlm2_chat_7b_model_meta_template = dict( |
|
round=[ |
|
dict(role='HUMAN', |
|
begin='<|im_start|>user\n', end='<|im_end|>\n'), |
|
dict(role='BOT', begin='<|im_start|>assistant\n', |
|
end='<|im_end|>\n', generate=True), |
|
], |
|
) |
|
hf_internlm2_chat_7b = dict( |
|
type=HuggingFaceCausalLM, |
|
abbr='internlm2-chat-7b-hf', |
|
path="internlm/internlm2-chat-7b", |
|
tokenizer_path='internlm/internlm2-chat-7b', |
|
model_kwargs=dict( |
|
trust_remote_code=True, |
|
device_map='auto', |
|
), |
|
tokenizer_kwargs=dict( |
|
padding_side='left', |
|
truncation_side='left', |
|
use_fast=False, |
|
trust_remote_code=True, |
|
), |
|
max_out_len=2000, |
|
max_seq_len=32768, |
|
batch_size=8, |
|
meta_template=hf_internlm2_chat_7b_model_meta_template, |
|
run_cfg=dict(num_gpus=1, num_procs=1), |
|
end_str='<|im_end|>', |
|
) |
|
|
|
internlm2_chat_7b_200k = dict( |
|
type=TurboMindModel, |
|
abbr='internlm2-chat-7b-200k', |
|
path="internlm/internlm2-chat-7b", |
|
meta_template=hf_internlm2_chat_7b_model_meta_template, |
|
engine_config=dict(session_len=210000, |
|
max_batch_size=8, |
|
rope_scaling_factor=2.0, |
|
model_name="internlm2-chat-7b"), |
|
gen_config=dict(top_k=1, top_p=0.8, |
|
temperature=1.0, |
|
max_new_tokens=2000), |
|
max_out_len=2000, |
|
max_seq_len=210000, |
|
batch_size=8, |
|
concurrency=8, |
|
run_cfg=dict(num_gpus=1, num_procs=1), |
|
) |
|
|
|
models = [ |
|
|
|
internlm2_chat_7b_200k, |
|
] |
|
|
|
work_dir = './outputs/needlebench' |
|
|