api-demo / opencompass-my-api /configs /eval_needlebench.py
TwT-6's picture
Upload 2667 files
256a159 verified
from opencompass.models import HuggingFaceCausalLM
from opencompass.models.turbomind import TurboMindModel
from opencompass.runners import SlurmSequentialRunner
from opencompass.partitioners import SizePartitioner, NaivePartitioner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
from mmengine.config import read_base
with read_base():
# eval needlebench_4k
from .datasets.needlebench.needlebench_4k.needlebench import needlebench_datasets
from .summarizers.needlebench import needlebench_4k_summarizer as summarizer
# only eval original "needle in a haystack test" in needlebench_4k
# from .datasets.needlebench.needlebench_4k.needlebench_single import needlebench_datasets_zh, needlebench_datasets_en
# from .summarizers.needlebench import needlebench_4k_summarizer as summarizer
# eval Ancestral Tracing Challenge(ATC)
# from .datasets.needlebench.atc.atc import needlebench_atc_datasets_zh, needlebench_atc_datasets_en
# from .summarizers.needlebench import needlebench_atc_summarizer as summarizer
datasets = sum([v for k, v in locals().items() if ('datasets' in k)], [])
hf_internlm2_chat_7b_model_meta_template = dict(
round=[
dict(role='HUMAN',
begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n',
end='<|im_end|>\n', generate=True),
],
)
hf_internlm2_chat_7b = dict(
type=HuggingFaceCausalLM,
abbr='internlm2-chat-7b-hf',
path="internlm/internlm2-chat-7b",
tokenizer_path='internlm/internlm2-chat-7b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=2000,
max_seq_len=32768,
batch_size=8,
meta_template=hf_internlm2_chat_7b_model_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
)
internlm2_chat_7b_200k = dict(
type=TurboMindModel,
abbr='internlm2-chat-7b-200k',
path="internlm/internlm2-chat-7b",
meta_template=hf_internlm2_chat_7b_model_meta_template,
engine_config=dict(session_len=210000,
max_batch_size=8,
rope_scaling_factor=2.0,
model_name="internlm2-chat-7b"),
gen_config=dict(top_k=1, top_p=0.8,
temperature=1.0,
max_new_tokens=2000),
max_out_len=2000,
max_seq_len=210000,
batch_size=8,
concurrency=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [
# hf_internlm2_chat_7b,
internlm2_chat_7b_200k,
]
work_dir = './outputs/needlebench'