|
from opencompass.multimodal.models.instructblip import ( |
|
InstructBlipVQAPromptConstructor, |
|
InstructBlipVQAPostProcessor, |
|
) |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='mmpretrain.LoadImageFromFile'), |
|
dict(type='mmpretrain.ToPIL', to_rgb=True), |
|
dict(type='mmpretrain.torchvision/Resize', |
|
size=(224, 224), |
|
interpolation=3), |
|
dict(type='mmpretrain.torchvision/ToTensor'), |
|
dict(type='mmpretrain.torchvision/Normalize', |
|
mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711)), |
|
dict( |
|
type='mmpretrain.PackInputs', |
|
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], |
|
meta_keys=['question_id', 'image_id'], |
|
) |
|
] |
|
|
|
dataset = dict( |
|
type='mmpretrain.TextVQA', |
|
data_root='data/textvqa', |
|
ann_file='annotations/TextVQA_0.5.1_val.json', |
|
pipeline=val_pipeline, |
|
data_prefix='images/train_images', |
|
) |
|
|
|
instruct_blip_textvqa_dataloader = dict(batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
collate_fn=dict(type='pseudo_collate'), |
|
sampler=dict(type='DefaultSampler', |
|
shuffle=False)) |
|
|
|
|
|
instruct_blip_textvqa_model = dict( |
|
type='blip2-vicuna-instruct', |
|
prompt_constructor=dict(type=InstructBlipVQAPromptConstructor), |
|
post_processor=dict(type=InstructBlipVQAPostProcessor), |
|
freeze_vit=True, |
|
low_resource=False, |
|
llm_model='/path/to/vicuna-7b/', |
|
max_output_txt_len=10, |
|
) |
|
|
|
|
|
instruct_blip_textvqa_evaluator = [dict(type='mmpretrain.VQAAcc')] |
|
|
|
instruct_blip_load_from = '/path/to/instruct_blip_vicuna7b_trimmed.pth' |
|
|