|
from opencompass.multimodal.models.openflamingo import OpenFlamingoScienceQAPromptConstructor |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='mmpretrain.ResizeEdge', |
|
scale=224, |
|
interpolation='bicubic', |
|
backend='pillow'), |
|
dict(type='CenterCrop', crop_size=(224, 224)), |
|
dict(type='mmpretrain.PackInputs', |
|
algorithm_keys=[ |
|
'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution' |
|
]) |
|
] |
|
|
|
dataset = dict(type='mmpretrain.ScienceQA', |
|
data_root='./data/scienceqa', |
|
split='val', |
|
split_file='pid_splits.json', |
|
ann_file='problems.json', |
|
image_only=True, |
|
data_prefix=dict(img_path='val'), |
|
pipeline=val_pipeline) |
|
|
|
openflamingo_scienceqa_dataloader = dict( |
|
batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
collate_fn=dict(type='default_collate'), |
|
persistent_workers=True, |
|
) |
|
|
|
|
|
openflamingo_scienceqa_model = dict( |
|
type='openflamingo', |
|
data_preprocessor=dict( |
|
type='mmpretrain.MultiModalDataPreprocessor', |
|
mean=[122.770938, 116.7460125, 104.09373615], |
|
std=[68.5005327, 66.6321579, 70.32316305], |
|
to_rgb=True, |
|
), |
|
tokenizer=dict(type='mmpretrain.LlamaTokenizer', |
|
name_or_path='decapoda-research/llama-7b-hf'), |
|
vision_encoder=dict( |
|
type='mmpretrain.VisionTransformer', |
|
arch='l', |
|
patch_size=14, |
|
pre_norm=True, |
|
norm_cfg=dict(type='LN', eps=1e-5), |
|
layer_cfgs=dict(act_cfg=dict(type='mmpretrain.QuickGELU')), |
|
final_norm=False, |
|
out_type='raw', |
|
pretrained= |
|
'/path/to/vision/encoder', |
|
), |
|
lang_encoder=dict( |
|
base=dict(type='mmpretrain.AutoModelForCausalLM', |
|
name_or_path= |
|
'decapoda-research/llama-7b-hf', |
|
local_files_only=True), |
|
adapter=dict(type='mmpretrain.FlamingoLMAdapter', |
|
vis_hidden_size=1024, |
|
cross_attn_every_n_layers=4, |
|
use_media_placement_augmentation=False), |
|
), |
|
task='vqa', |
|
generation_cfg=dict(num_beams=3, max_new_tokens=20, length_penalty=-2.0), |
|
prompt_constructor=dict(type=OpenFlamingoScienceQAPromptConstructor) |
|
) |
|
|
|
|
|
openflamingo_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')] |
|
|
|
openflamingo_load_from = '/path/to/pretrained/weights' |
|
|