|
from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMMMBenchPromptConstructor) |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='mmpretrain.torchvision/Resize', |
|
size=(224, 224), |
|
interpolation=3), |
|
dict(type='mmpretrain.torchvision/ToTensor'), |
|
dict(type='mmpretrain.torchvision/Normalize', |
|
mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711)), |
|
dict(type='mmpretrain.PackInputs', |
|
algorithm_keys=[ |
|
'question', 'options', 'category', 'l2-category', 'context', |
|
'index', 'options_dict' |
|
]) |
|
] |
|
|
|
dataset = dict(type='opencompass.MMBenchDataset', |
|
data_file='data/mmbench/mmbench_test_20230712.tsv', |
|
pipeline=val_pipeline) |
|
|
|
visualglm_mmbench_dataloader = dict(batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
collate_fn=dict(type='pseudo_collate'), |
|
sampler=dict(type='DefaultSampler', shuffle=False)) |
|
|
|
|
|
visualglm_mmbench_model = dict( |
|
type='visualglm', |
|
pretrained_path='/path/to/visualglm', |
|
prompt_constructor=dict(type=VisualGLMMMBenchPromptConstructor), |
|
post_processor=dict(type=VisualGLMBasePostProcessor), |
|
gen_kwargs=dict(max_new_tokens=50,num_beams=5,do_sample=False,repetition_penalty=1.0,length_penalty=-1.0) |
|
) |
|
|
|
|
|
visualglm_mmbench_evaluator = [ |
|
dict(type='opencompass.DumpResults', |
|
save_path='work_dirs/visualglm-6b-mmbench.xlsx') |
|
] |
|
|