TwT-6's picture
Upload 2667 files
256a159 verified
import ast
import json
import networkx as nx
import pandas as pd
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from ..base import BaseDataset
from .prompts import tsp_dPrompts
def q2text(adj_matrix, distance_limit, p=tsp_dPrompts):
total_cities = adj_matrix.shape[0] # exclude the last row
prompt_text = p['Intro'] + '\n' + \
p['Initial_question'].format(total_cities=total_cities, distance_limit=distance_limit) + '\n' + \
p['Output_content'] + '\n' + \
p['Output_format'] + '\n' + \
'The distances between cities are below: \n'
for i in range(adj_matrix.shape[0]):
for j in range(adj_matrix.shape[1]):
if i < j: # only use the upper triangle
this_line = 'The distance between City {} and City {} is {}.'.format(i, j, adj_matrix[i, j])
prompt_text += this_line + '\n'
return prompt_text
@LOAD_DATASET.register_module(force=True)
class cmp_TSP_D_Dataset(BaseDataset):
@staticmethod
def load(path: str):
raw_data = []
data_path = path
all_data = []
for level in range(10):
for file_num in range(10):
df = pd.read_csv(data_path + 'decision_data_TSP_level_{}_instance_{}.csv'.format(level, file_num + 1),
header=None,
index_col=False)
all_data.append((level + 1, df))
for (level, q) in all_data:
threshold = q.iloc[-1, 0] # therashold is the last row
distance_matrix = q.iloc[:
-1].values # distance matrix is the rest of the rows
prompt = q2text(distance_matrix, threshold)
raw_data.append({
'prompt': prompt,
'q': str(level) + '####\n' + json.dumps(q.to_json()),
'level': level
})
dataset = Dataset.from_list(raw_data)
return dataset
@ICL_EVALUATORS.register_module(force=True)
class cmp_TSP_D_Evaluator(BaseEvaluator):
def score(self, predictions, references):
assert len(predictions) == len(references)
result = {'pass': 0, 'fail': 0}
details = {}
tsp_d_Results = []
for index, (q, llm_string) in enumerate(zip(references, predictions)):
output_dict = {}
output, reasoning = self.parse_xml_to_dict(llm_string)
level = int(q.split('####\n')[0])
q = json.loads(q.split('####\n')[-1])
q = pd.DataFrame(eval(q))
threshold = q.iloc[-1, 0] # therashold is the last row
distance_matrix = q.iloc[:-1].values # distance matrix is the rest of the rows
output_dict['output'] = output
try:
output_dict['correctness'], _ = self.tsp_decision_check(distance_matrix, threshold, output)
except Exception as e:
print(f'Check failed: {e}')
output_dict['correctness'] = False
output_dict['reasoning'] = reasoning
output_dict['level'] = level
if output_dict:
tsp_d_Results.append(output_dict)
if output_dict['correctness']:
r = 'pass'
else:
r = 'fail'
result[r] += level
details[str(index)] = {'q': q, 'output': output, 'result': r}
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
result['details'] = details
final_result = {'Weighted Accuracy': result['score']}
return final_result
def parse_xml_to_dict(self, xml_string):
try:
assert '<final_answer>' in xml_string
assert '</final_answer>' in xml_string
assert '<reasoning>' in xml_string
assert '</reasoning>' in xml_string
final_answer_start = xml_string.index('<final_answer>') + len('<final_answer>')
final_answer_end = xml_string.index('</final_answer>')
reasoning_start = xml_string.index('<reasoning>') + len('<reasoning>')
reasoning_end = xml_string.index('</reasoning>')
final_answer_element = xml_string[final_answer_start:final_answer_end].rstrip().strip().rstrip()
reasoning_element = xml_string[reasoning_start:reasoning_end].rstrip().strip().rstrip()
try:
final_answer_element = ast.literal_eval(final_answer_element)
except Exception:
final_answer_element = ''
except Exception:
final_answer_element = ''
reasoning_element = ''
return final_answer_element, reasoning_element
def tsp_approx(self, distance_matrix):
"""Returns an approximate solution to the TSP problem.
:param distance_matrix: A 2D numpy array representing the distance matrix.
:return: A list of the cities in the order they were visited.
"""
G = nx.from_numpy_array(distance_matrix)
return nx.approximation.traveling_salesman_problem(G)
def tsp_decision_check(self, distance_matrix, threshold, tour):
"""Checks if a given TSP tour is valid and within the threshold
distance.
:param distance_matrix: A 2D numpy array representing the distance matrix.
:param threshold: The maximum distance allowed.
:param tour: A dictionary containing the feasibility.
"""
try:
is_feasible = tour.get('Feasible', 'no').lower() == 'yes'
except Exception:
return False, 'Output format incorrect'
# Calculate the approxed distance of the tour
tours = self.tsp_approx(distance_matrix)
tour_distance = sum(distance_matrix[tours[i], tours[i + 1]] for i in range(len(tours) - 1)) + distance_matrix[tours[-1], tours[0]]
if is_feasible != (tour_distance <= threshold):
return False, f'Feasibility mismatch: {is_feasible} vs {tour_distance} > {threshold}'
return True, 'Feasible: {} <= {}'.format(tour_distance, threshold)