TwT-6's picture
Upload 2667 files
256a159 verified
import json
import os.path as osp
from datasets import Dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class ARCDataset(BaseDataset):
@staticmethod
def load(path: str):
with open(path, 'r', errors='ignore') as in_f:
rows = []
for line in in_f:
item = json.loads(line.strip())
question = item['question']
if len(question['choices']) != 4:
continue
labels = [c['label'] for c in question['choices']]
answerKey = 'ABCD'[labels.index(item['answerKey'])]
rows.append({
'question': question['stem'],
'answerKey': answerKey,
'textA': question['choices'][0]['text'],
'textB': question['choices'][1]['text'],
'textC': question['choices'][2]['text'],
'textD': question['choices'][3]['text'],
})
return Dataset.from_list(rows)
class ARCDatasetClean(BaseDataset):
# load the contamination annotations of CEval from
# https://github.com/liyucheng09/Contamination_Detector
@staticmethod
def load_contamination_annotations(path, split='val'):
import requests
assert split == 'test', 'We only have test set annotation for ARC'
annotation_cache_path = osp.join(
path, f'ARC_c_{split}_contamination_annotations.json')
if osp.exists(annotation_cache_path):
with open(annotation_cache_path, 'r') as f:
annotations = json.load(f)
return annotations
link_of_annotations = 'https://github.com/liyucheng09/Contamination_Detector/releases/download/v0.1.1rc/ARC_annotations.json' # noqa
annotations = json.loads(requests.get(link_of_annotations).text)
with open(annotation_cache_path, 'w') as f:
json.dump(annotations, f)
return annotations
@staticmethod
def load(path: str):
annotations = ARCDatasetClean.load_contamination_annotations(
osp.dirname(path), 'test')
with open(path, 'r', errors='ignore') as in_f:
rows = []
for line in in_f:
item = json.loads(line.strip())
id_ = item['id']
question = item['question']
if id_ in annotations:
is_clean = annotations[id_][0]
else:
is_clean = 'not labeled'
if len(question['choices']) != 4:
continue
labels = [c['label'] for c in question['choices']]
answerKey = 'ABCD'[labels.index(item['answerKey'])]
rows.append({
'question': question['stem'],
'answerKey': answerKey,
'textA': question['choices'][0]['text'],
'textB': question['choices'][1]['text'],
'textC': question['choices'][2]['text'],
'textD': question['choices'][3]['text'],
'is_clean': is_clean,
})
return Dataset.from_list(rows)