|
import csv |
|
import json |
|
import os.path as osp |
|
|
|
from datasets import Dataset, DatasetDict |
|
|
|
from opencompass.registry import LOAD_DATASET |
|
|
|
from .base import BaseDataset |
|
|
|
|
|
@LOAD_DATASET.register_module() |
|
class CEvalDataset(BaseDataset): |
|
|
|
@staticmethod |
|
def load(path: str, name: str): |
|
dataset = {} |
|
for split in ['dev', 'val', 'test']: |
|
filename = osp.join(path, split, f'{name}_{split}.csv') |
|
with open(filename, encoding='utf-8') as f: |
|
reader = csv.reader(f) |
|
header = next(reader) |
|
for row in reader: |
|
item = dict(zip(header, row)) |
|
item.setdefault('explanation', '') |
|
item.setdefault('answer', '') |
|
dataset.setdefault(split, []).append(item) |
|
dataset = {i: Dataset.from_list(dataset[i]) for i in dataset} |
|
return DatasetDict(dataset) |
|
|
|
|
|
class CEvalDatasetClean(BaseDataset): |
|
|
|
|
|
|
|
@staticmethod |
|
def load_contamination_annotations(path, split='val'): |
|
import requests |
|
|
|
assert split == 'val', 'Now we only have annotations for val set' |
|
annotation_cache_path = osp.join( |
|
path, split, 'ceval_contamination_annotations.json') |
|
if osp.exists(annotation_cache_path): |
|
with open(annotation_cache_path, 'r') as f: |
|
annotations = json.load(f) |
|
return annotations |
|
link_of_annotations = 'https://github.com/liyucheng09/Contamination_Detector/releases/download/v0.1.1rc/ceval_annotations.json' |
|
annotations = json.loads(requests.get(link_of_annotations).text) |
|
with open(annotation_cache_path, 'w') as f: |
|
json.dump(annotations, f) |
|
return annotations |
|
|
|
@staticmethod |
|
def load(path: str, name: str): |
|
dataset = {} |
|
for split in ['dev', 'val', 'test']: |
|
if split == 'val': |
|
annotations = CEvalDatasetClean.load_contamination_annotations( |
|
path, split) |
|
filename = osp.join(path, split, f'{name}_{split}.csv') |
|
with open(filename, encoding='utf-8') as f: |
|
reader = csv.reader(f) |
|
header = next(reader) |
|
for row_index, row in enumerate(reader): |
|
item = dict(zip(header, row)) |
|
item.setdefault('explanation', '') |
|
item.setdefault('answer', '') |
|
if split == 'val': |
|
row_id = f'{name}-{row_index}' |
|
if row_id in annotations: |
|
item['is_clean'] = annotations[row_id][0] |
|
else: |
|
item['is_clean'] = 'not labeled' |
|
dataset.setdefault(split, []).append(item) |
|
dataset = {i: Dataset.from_list(dataset[i]) for i in dataset} |
|
return DatasetDict(dataset) |
|
|