|
from typing import List |
|
|
|
from datasets import Dataset |
|
|
|
from opencompass.openicl import BaseEvaluator |
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET |
|
|
|
from ..base import BaseDataset |
|
from .utils import iter_jsonl |
|
|
|
|
|
@LOAD_DATASET.register_module() |
|
class InfiniteBenchendiaDataset(BaseDataset): |
|
|
|
@staticmethod |
|
def load(path: str): |
|
|
|
dataset = list(iter_jsonl(path)) |
|
|
|
raw_data = [] |
|
for item in dataset: |
|
context = item['context'] |
|
question = item['input'] |
|
answer = item['answer'] |
|
raw_data.append({ |
|
'context': context, |
|
'question': question, |
|
'answer': answer |
|
}) |
|
dataset = Dataset.from_list(raw_data) |
|
return dataset |
|
|
|
|
|
@ICL_EVALUATORS.register_module() |
|
class InfiniteBenchendiaEvaluator(BaseEvaluator): |
|
|
|
def score(self, predictions: List, references: List) -> dict: |
|
score = 0. |
|
for i in range(len(predictions)): |
|
prediction = predictions[i] |
|
reference = references[i][0] |
|
for c in ['\n', ':', '"', "'", '.', ',', '?', '!', '{', '}']: |
|
prediction = prediction.replace(c, ' ') |
|
words = prediction.split() |
|
words = [x.upper() for x in words] |
|
if reference in words: |
|
score += 1 |
|
|
|
score = score / len(predictions) * 100 |
|
return {'score': score} |
|
|