TwT-6's picture
Upload 2667 files
256a159 verified
import difflib
import re
import string
from collections import Counter
from typing import List
import jieba
from fuzzywuzzy import fuzz
from rouge import Rouge
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_zh_answer(s):
"""Lower text and remove punctuation, extra whitespace."""
def white_space_fix(text):
return ''.join(text.split())
def remove_punc(text):
cn_punctuation = '!?。。"#$%&'()*+,-/:;<=>@[\]^_`\
{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.'
all_punctuation = set(string.punctuation + cn_punctuation)
return ''.join(ch for ch in text if ch not in all_punctuation)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
@ICL_EVALUATORS.register_module()
class LongBenchF1Evaluator(BaseEvaluator):
def __init__(self, language: str = 'en') -> None:
super().__init__()
assert language in ['en', 'zh']
self.language = language
def score(self, predictions: List, references: List) -> dict:
def f1_score(prediction, reference, **kwargs):
common = Counter(prediction) & Counter(reference)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(reference)
f1 = (2 * precision * recall) / (precision + recall)
return f1
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
task_score = 0.
for reference in reference_list:
if self.language == 'en':
normalized_prediction = normalize_answer(prediction)
normalized_reference = normalize_answer(reference)
prediction_tokens = normalized_prediction.split()
reference_tokens = normalized_reference.split()
else:
prediction_tokens = list(
jieba.cut(prediction, cut_all=False))
reference_tokens = list(jieba.cut(reference,
cut_all=False))
prediction_tokens = [
normalize_zh_answer(token)
for token in prediction_tokens
]
reference_tokens = [
normalize_zh_answer(token)
for token in reference_tokens
]
prediction_tokens = [
token for token in prediction_tokens if len(token) > 0
]
reference_tokens = [
token for token in reference_tokens if len(token) > 0
]
task_score = max(task_score,
f1_score(prediction_tokens, reference_tokens))
score += task_score
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchCountEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
for reference in reference_list:
numbers = re.findall(r'\d+', prediction)
right_num = 0
for number in numbers:
if str(number) == str(reference):
right_num += 1
score += 0.0 if len(numbers) == 0 else float(right_num /
len(numbers))
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchRetrievalEvaluator(BaseEvaluator):
def __init__(self, language: str = 'en') -> None:
super().__init__()
assert language in ['en', 'zh']
self.language = language
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
for reference in reference_list:
if self.language == 'en':
pattern = r'Paragraph (\d+)'
else:
pattern = r'段落(\d+)'
matches = re.findall(pattern, reference)
reference_id = matches[0]
numbers = re.findall(r'\d+', prediction)
right_num = 0
for number in numbers:
if str(number) == str(reference_id):
right_num += 1
score += 0.0 if len(numbers) == 0 else float(right_num /
len(numbers))
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchRougeEvaluator(BaseEvaluator):
def __init__(self, language: str = 'en') -> None:
super().__init__()
assert language in ['en', 'zh']
self.language = language
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
task_score = 0.
for reference in reference_list:
if self.language == 'zh':
prediction = ' '.join(
list(jieba.cut(prediction, cut_all=False)))
reference = ' '.join(
list(jieba.cut(reference, cut_all=False)))
rouge = Rouge()
try:
cur_score = rouge.get_scores([prediction], [reference],
avg=True)['rouge-l']['f']
except Exception:
cur_score = 0.
task_score = max(task_score, cur_score)
score += task_score
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchCodeSimEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
task_score = 0.
for reference in reference_list:
all_lines = prediction.lstrip('\n').split('\n')
prediction = ''
for line in all_lines:
if ('`' not in line) and ('#'
not in line) and ('//'
not in line):
prediction = line
break
task_score = max(task_score,
(fuzz.ratio(prediction, reference) / 100))
score += task_score
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchClassificationEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]['answers']
for reference in reference_list:
em_match_list = []
all_classes = references[i]['all_classes']
for class_name in all_classes:
if class_name in prediction:
em_match_list.append(class_name)
for match_term in em_match_list:
if match_term in reference and match_term != reference:
em_match_list.remove(match_term)
if em_match_list != 0:
if reference in em_match_list:
score += (1.0 / len(em_match_list))
else:
best_match = None
highest_similarity = 0
for names in all_classes:
similarity = difflib.SequenceMatcher(
None, names, prediction).ratio()
if similarity > highest_similarity:
highest_similarity = similarity
best_match = names
score += float(best_match == reference)
score = score / len(predictions) * 100
return {'score': score}