TwT-6's picture
Upload 2667 files
256a159 verified
import json
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import requests
from opencompass.registry import MODELS
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
@MODELS.register_module()
class KrGPT(BaseAPIModel):
is_api: bool = True
def __init__(
self,
path: str = 'KrGPT',
url: str = 'http://101.69.162.5:9300/v1/chat/completions',
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
generation_kwargs: Optional[Dict] = dict(),
):
super().__init__(
path=path,
max_seq_len=max_seq_len,
meta_template=meta_template,
retry=retry,
generation_kwargs=generation_kwargs,
)
self.logger = get_logger()
self.url = url
self.generation_kwargs = generation_kwargs
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024)
def generate(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[self.max_out_len] * len(inputs)))
return results
def _generate(self,
input: PromptType,
max_out_len: int,
temperature: float = 0.0) -> str:
"""Generate results given a list of inputs.
Args:
inputs (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
elif item['role'] == 'SYSTEM':
msg['role'] = 'system'
messages.append(msg)
max_num_retries = 0
while max_num_retries < self.retry:
header = {'content-type': 'application/json'}
try:
data = dict(messages=messages)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
continue
try:
return response['choices'][0]['message']['content'].strip()
except KeyError:
self.logger.error('Find error message in response: ',
str(response))
# if 'error' in response:
# if response['error']['code'] == 'rate_limit_exceeded':
# time.sleep(1)
# continue
# elif response['error']['code'] == 'insufficient_quota':
# self.invalid_keys.add(key)
# self.logger.warn(f'insufficient_quota key: {key}')
# continue
# self.logger.error('Find error message in response: ',
# str(response['error']))
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')