|
from typing import Dict, List, Optional, Union |
|
|
|
import torch |
|
|
|
from opencompass.models.base import BaseModel |
|
from opencompass.models.base_api import APITemplateParser |
|
from opencompass.utils.logging import get_logger |
|
from opencompass.utils.prompt import PromptList |
|
|
|
PromptType = Union[PromptList, str] |
|
|
|
|
|
class Mixtral(BaseModel): |
|
"""Mixtral model wrapper https://github.com/open-compass/MixtralKit. |
|
|
|
Args: |
|
path (str): path to the model directory |
|
max_seq_len (int): max sequence length |
|
max_batch_size (int): max batch size |
|
tokenizer_only (bool): whether to load tokenizer only |
|
tokenizer_path (str): path to the tokenizer directory |
|
meta_template (dict): meta template for the model |
|
""" |
|
|
|
def __init__( |
|
self, |
|
path: str, |
|
max_seq_len: int = 2048, |
|
max_batch_size: int = 8, |
|
tokenizer_only: bool = False, |
|
tokenizer_path: Optional[str] = None, |
|
meta_template: Optional[Dict] = None, |
|
num_gpus: int = 2, |
|
): |
|
if tokenizer_only: |
|
self._load_tokenizer(tokenizer_path=tokenizer_path) |
|
else: |
|
self._load_model(path=path, |
|
max_seq_len=max_seq_len, |
|
max_batch_size=max_batch_size, |
|
tokenizer_path=tokenizer_path, |
|
num_gpus=num_gpus) |
|
self.max_seq_len = max_seq_len |
|
self.template_parser = APITemplateParser(meta_template) |
|
self.logger = get_logger() |
|
|
|
def _load_model(self, |
|
path: str, |
|
max_seq_len: int, |
|
max_batch_size: int, |
|
tokenizer_path: Optional[str] = None, |
|
num_gpus: int = 2): |
|
from mixtralkit.mixtral import Mixtral |
|
self.generator = Mixtral.build(ckpt_dir=path, |
|
tokenizer_path=tokenizer_path, |
|
max_seq_len=max_seq_len, |
|
max_batch_size=max_batch_size, |
|
num_gpus=num_gpus) |
|
self.tokenizer = self.generator.tokenizer |
|
self.model = self.generator.model |
|
|
|
def _load_tokenizer(self, tokenizer_path: str): |
|
from mixtralkit.layers import Tokenizer |
|
self.tokenizer = Tokenizer(tokenizer_path) |
|
|
|
def generate(self, inputs: List[str], max_out_len: int) -> List[str]: |
|
prompt_tokens = [] |
|
for input in inputs: |
|
tokens = self.tokenizer.encode(input, True, False) |
|
num_token = min(self.model.params.max_seq_len, len(tokens)) |
|
prompt_tokens.append(tokens[-num_token:]) |
|
generation_tokens, _ = self.generator.generate( |
|
prompt_tokens=prompt_tokens, |
|
max_gen_len=max_out_len, |
|
temperature=0, |
|
) |
|
results = [self.tokenizer.decode(t) for t in generation_tokens] |
|
return results |
|
|
|
def get_ppl(self, |
|
inputs: List[str], |
|
mask_length: Optional[List[int]] = None) -> List[float]: |
|
assert mask_length is None, 'mask_length is not supported' |
|
bsz = len(inputs) |
|
params = self.model.params |
|
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) |
|
|
|
prompt_tokens = [self.tokenizer.encode(x, True, False) for x in inputs] |
|
max_prompt_size = max([len(t) for t in prompt_tokens]) |
|
total_len = min(params.max_seq_len, max_prompt_size) |
|
tokens = torch.zeros((bsz, total_len)).cuda().long() |
|
for k, t in enumerate(prompt_tokens): |
|
num_token = min(total_len, len(t)) |
|
tokens[k, :num_token] = torch.tensor(t[-num_token:]).long() |
|
|
|
outputs = self.model.forward(tokens, 0) |
|
|
|
shift_logits = outputs[..., :-1, :].contiguous().float() |
|
shift_labels = tokens[..., 1:].contiguous() |
|
shift_logits = shift_logits.view(-1, shift_logits.size(-1)) |
|
shift_labels = shift_labels.view(-1) |
|
loss_fct = torch.nn.CrossEntropyLoss(reduction='none', ignore_index=0) |
|
loss = loss_fct(shift_logits, shift_labels).view(bsz, -1) |
|
lens = (tokens != 0).sum(-1).cpu().numpy() |
|
ce_loss = loss.sum(-1).cpu().detach().numpy() / lens |
|
return ce_loss |
|
|
|
def get_token_len(self, prompt: str) -> int: |
|
return len(self.tokenizer.encode(prompt, True, True)) |
|
|