|
from typing import Dict, Optional, Union |
|
|
|
import torch |
|
|
|
from opencompass.utils.prompt import PromptList |
|
|
|
from .huggingface import HuggingFace |
|
|
|
PromptType = Union[PromptList, str] |
|
|
|
|
|
class ModelScope(HuggingFace): |
|
"""Model wrapper around ModelScope models. |
|
|
|
Args: |
|
path (str): The name or path to ModelScope's model. |
|
ms_cache_dir: Set the cache dir to MS model cache dir. If None, it will |
|
use the env variable MS_MODEL_HUB. Defaults to None. |
|
max_seq_len (int): The maximum length of the input sequence. Defaults |
|
to 2048. |
|
tokenizer_path (str): The path to the tokenizer. Defaults to None. |
|
tokenizer_kwargs (dict): Keyword arguments for the tokenizer. |
|
Defaults to {}. |
|
peft_path (str, optional): The name or path to the ModelScope's PEFT |
|
model. If None, the original model will not be converted to PEFT. |
|
Defaults to None. |
|
tokenizer_only (bool): If True, only the tokenizer will be initialized. |
|
Defaults to False. |
|
model_kwargs (dict): Keyword arguments for the model, used in loader. |
|
Defaults to dict(device_map='auto'). |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
extract_pred_after_decode (bool): Whether to extract the prediction |
|
string from the decoded output string, instead of extract the |
|
prediction tokens before decoding. Defaults to False. |
|
batch_padding (bool): If False, inference with be performed in for-loop |
|
without batch padding. |
|
pad_token_id (int): The id of the padding token. Defaults to None. Use |
|
(#vocab + pad_token_id) if get negative value. |
|
mode (str, optional): The method of input truncation when input length |
|
exceeds max_seq_len. 'mid' represents the part of input to |
|
truncate. Defaults to 'none'. |
|
|
|
Note: |
|
About ``extract_pred_after_decode``: Commonly, we should extract the |
|
the prediction tokens before decoding. But for some tokenizers using |
|
``sentencepiece``, like LLaMA, this behavior may change the number of |
|
whitespaces, which is harmful for Python programming tasks. |
|
""" |
|
|
|
def __init__(self, |
|
path: str, |
|
ms_cache_dir: Optional[str] = None, |
|
max_seq_len: int = 2048, |
|
tokenizer_path: Optional[str] = None, |
|
tokenizer_kwargs: dict = dict(), |
|
peft_path: Optional[str] = None, |
|
tokenizer_only: bool = False, |
|
model_kwargs: dict = dict(device_map='auto'), |
|
meta_template: Optional[Dict] = None, |
|
extract_pred_after_decode: bool = False, |
|
batch_padding: bool = False, |
|
pad_token_id: Optional[int] = None, |
|
mode: str = 'none'): |
|
super().__init__( |
|
path=path, |
|
hf_cache_dir=ms_cache_dir, |
|
max_seq_len=max_seq_len, |
|
tokenizer_path=tokenizer_path, |
|
tokenizer_kwargs=tokenizer_kwargs, |
|
peft_path=peft_path, |
|
tokenizer_only=tokenizer_only, |
|
model_kwargs=model_kwargs, |
|
meta_template=meta_template, |
|
extract_pred_after_decode=extract_pred_after_decode, |
|
batch_padding=batch_padding, |
|
pad_token_id=pad_token_id, |
|
mode=mode, |
|
) |
|
|
|
def _load_tokenizer(self, path: str, tokenizer_path: Optional[str], |
|
tokenizer_kwargs: dict): |
|
from modelscope import AutoTokenizer |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_path if tokenizer_path else path, **tokenizer_kwargs) |
|
|
|
|
|
if self.pad_token_id is not None: |
|
if self.pad_token_id < 0: |
|
self.pad_token_id += self.tokenizer.vocab_size |
|
if self.tokenizer.pad_token_id is None: |
|
self.logger.debug(f'Using {self.pad_token_id} as pad_token_id') |
|
elif self.tokenizer.pad_token_id != self.pad_token_id: |
|
self.logger.warning( |
|
'pad_token_id is not consistent with the tokenizer. Using ' |
|
f'{self.pad_token_id} as pad_token_id') |
|
self.tokenizer.pad_token_id = self.pad_token_id |
|
elif self.tokenizer.pad_token_id is None: |
|
self.logger.warning('pad_token_id is not set for the tokenizer.') |
|
if self.tokenizer.eos_token is not None: |
|
self.logger.warning( |
|
f'Using eos_token_id {self.tokenizer.eos_token} ' |
|
'as pad_token_id.') |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
else: |
|
from modelscope import GenerationConfig |
|
gcfg = GenerationConfig.from_pretrained(path) |
|
|
|
if gcfg.pad_token_id is not None: |
|
self.logger.warning( |
|
f'Using pad_token_id {gcfg.pad_token_id} ' |
|
'as pad_token_id.') |
|
self.tokenizer.pad_token_id = gcfg.pad_token_id |
|
else: |
|
raise ValueError( |
|
'pad_token_id is not set for this tokenizer. Try to ' |
|
'set pad_token_id via passing ' |
|
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.') |
|
|
|
|
|
if 'decapoda-research/llama' in path or \ |
|
(tokenizer_path and |
|
'decapoda-research/llama' in tokenizer_path): |
|
self.logger.warning('We set new pad_token_id for LLaMA model') |
|
|
|
|
|
self.tokenizer.bos_token = '<s>' |
|
self.tokenizer.eos_token = '</s>' |
|
self.tokenizer.pad_token_id = 0 |
|
|
|
def _set_model_kwargs_torch_dtype(self, model_kwargs): |
|
if 'torch_dtype' not in model_kwargs: |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = { |
|
'torch.float16': torch.float16, |
|
'torch.bfloat16': torch.bfloat16, |
|
'torch.float': torch.float, |
|
'auto': 'auto', |
|
'None': None |
|
}.get(model_kwargs['torch_dtype']) |
|
self.logger.debug(f'MS using torch_dtype: {torch_dtype}') |
|
if torch_dtype is not None: |
|
model_kwargs['torch_dtype'] = torch_dtype |
|
|
|
def _load_model(self, |
|
path: str, |
|
model_kwargs: dict, |
|
peft_path: Optional[str] = None): |
|
from modelscope import AutoModel, AutoModelForCausalLM |
|
|
|
self._set_model_kwargs_torch_dtype(model_kwargs) |
|
try: |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, **model_kwargs) |
|
except ValueError: |
|
self.model = AutoModel.from_pretrained(path, **model_kwargs) |
|
|
|
if peft_path is not None: |
|
from peft import PeftModel |
|
self.model = PeftModel.from_pretrained(self.model, |
|
peft_path, |
|
is_trainable=False) |
|
self.model.eval() |
|
self.model.generation_config.do_sample = False |
|
|
|
|
|
if 'decapoda-research/llama' in path: |
|
self.model.config.bos_token_id = 1 |
|
self.model.config.eos_token_id = 2 |
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id |
|
|
|
|
|
class ModelScopeCausalLM(ModelScope): |
|
"""Model wrapper around ModelScope CausalLM. |
|
|
|
Args: |
|
path (str): The name or path to ModelScope's model. |
|
ms_cache_dir: Set the cache dir to MS model cache dir. If None, it will |
|
use the env variable MS_MODEL_HUB. Defaults to None. |
|
max_seq_len (int): The maximum length of the input sequence. Defaults |
|
to 2048. |
|
tokenizer_path (str): The path to the tokenizer. Defaults to None. |
|
tokenizer_kwargs (dict): Keyword arguments for the tokenizer. |
|
Defaults to {}. |
|
peft_path (str, optional): The name or path to the ModelScope's PEFT |
|
model. If None, the original model will not be converted to PEFT. |
|
Defaults to None. |
|
tokenizer_only (bool): If True, only the tokenizer will be initialized. |
|
Defaults to False. |
|
model_kwargs (dict): Keyword arguments for the model, used in loader. |
|
Defaults to dict(device_map='auto'). |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
batch_padding (bool): If False, inference with be performed in for-loop |
|
without batch padding. |
|
""" |
|
|
|
def _load_model(self, |
|
path: str, |
|
model_kwargs: dict, |
|
peft_path: Optional[str] = None): |
|
from modelscope import AutoModelForCausalLM |
|
|
|
self._set_model_kwargs_torch_dtype(model_kwargs) |
|
self.model = AutoModelForCausalLM.from_pretrained(path, **model_kwargs) |
|
if peft_path is not None: |
|
from peft import PeftModel |
|
self.model = PeftModel.from_pretrained(self.model, |
|
peft_path, |
|
is_trainable=False) |
|
self.model.eval() |
|
self.model.generation_config.do_sample = False |
|
|