TwT-6's picture
Upload 2667 files
256a159 verified
import json
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
from typing import Dict, List, Optional, Union
import jieba
import requests
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
OPENAI_API_BASE = 'https://api.openai.com/v1/chat/completions'
@MODELS.register_module()
class OpenAI(BaseAPIModel):
"""Model wrapper around OpenAI's models.
Args:
path (str): The name of OpenAI's model.
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): OpenAI key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
list, the keys will be used in round-robin manner. Defaults to
'ENV'.
org (str or List[str], optional): OpenAI organization(s). If not
specified, OpenAI uses the default organization bound to each API
key. If specified, the orgs will be posted with each request in
round-robin manner. Defaults to None.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
openai_api_base (str): The base url of OpenAI's API. Defaults to
'https://api.openai.com/v1/chat/completions'.
mode (str, optional): The method of input truncation when input length
exceeds max_seq_len. 'front','mid' and 'rear' represents the part
of input to truncate. Defaults to 'none'.
temperature (float, optional): What sampling temperature to use.
If not None, will override the temperature in the `generate()`
call. Defaults to None.
"""
is_api: bool = True
def __init__(self,
path: str = 'gpt-3.5-turbo',
max_seq_len: int = 4096,
query_per_second: int = 1,
rpm_verbose: bool = False,
retry: int = 2,
key: Union[str, List[str]] = 'ENV',
org: Optional[Union[str, List[str]]] = None,
meta_template: Optional[Dict] = None,
openai_api_base: str = OPENAI_API_BASE,
mode: str = 'none',
temperature: Optional[float] = None):
super().__init__(path=path,
max_seq_len=max_seq_len,
meta_template=meta_template,
query_per_second=query_per_second,
rpm_verbose=rpm_verbose,
retry=retry)
import tiktoken
self.tiktoken = tiktoken
self.temperature = temperature
assert mode in ['none', 'front', 'mid', 'rear']
self.mode = mode
if isinstance(key, str):
self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key]
else:
self.keys = key
# record invalid keys and skip them when requesting API
# - keys have insufficient_quota
self.invalid_keys = set()
self.key_ctr = 0
if isinstance(org, str):
self.orgs = [org]
else:
self.orgs = org
self.org_ctr = 0
self.url = openai_api_base
self.path = path
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
temperature: float = 0.7,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic. Defaults to 0.7.
Returns:
List[str]: A list of generated strings.
"""
if self.temperature is not None:
temperature = self.temperature
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs)))
return results
def _generate(self, input: str or PromptList, max_out_len: int,
temperature: float) -> str:
"""Generate results given a list of inputs.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
# max num token for gpt-3.5-turbo is 4097
context_window = 4096
if '32k' in self.path:
context_window = 32768
elif '16k' in self.path:
context_window = 16384
elif 'gpt-4' in self.path:
context_window = 8192
# will leave 100 tokens as prompt buffer, triggered if input is str
if isinstance(input, str) and self.mode != 'none':
context_window = self.max_seq_len
input = self.bin_trim(input, context_window - 100 - max_out_len)
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
elif item['role'] == 'SYSTEM':
msg['role'] = 'system'
messages.append(msg)
# Hold out 100 tokens due to potential errors in tiktoken calculation
max_out_len = min(
max_out_len, context_window - self.get_token_len(str(input)) - 100)
if max_out_len <= 0:
return ''
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
with Lock():
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header = {
'Authorization': f'Bearer {key}',
'content-type': 'application/json',
}
if self.orgs:
with Lock():
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
try:
data = dict(
model=self.path,
messages=messages,
max_tokens=max_out_len,
n=1,
stop=None,
temperature=temperature,
)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
continue
try:
return response['choices'][0]['message']['content'].strip()
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
self.logger.error('Find error message in response: ',
str(response['error']))
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
enc = self.tiktoken.encoding_for_model(self.path)
return len(enc.encode(prompt))
def bin_trim(self, prompt: str, num_token: int) -> str:
"""Get a suffix of prompt which is no longer than num_token tokens.
Args:
prompt (str): Input string.
num_token (int): The upper bound of token numbers.
Returns:
str: The trimmed prompt.
"""
token_len = self.get_token_len(prompt)
if token_len <= num_token:
return prompt
pattern = re.compile(r'[\u4e00-\u9fa5]')
if pattern.search(prompt):
words = list(jieba.cut(prompt, cut_all=False))
sep = ''
else:
words = prompt.split(' ')
sep = ' '
l, r = 1, len(words)
while l + 2 < r:
mid = (l + r) // 2
if self.mode == 'front':
cur_prompt = sep.join(words[-mid:])
elif self.mode == 'mid':
cur_prompt = sep.join(words[:mid]) + sep.join(words[-mid:])
elif self.mode == 'rear':
cur_prompt = sep.join(words[:mid])
if self.get_token_len(cur_prompt) <= num_token:
l = mid # noqa: E741
else:
r = mid
if self.mode == 'front':
prompt = sep.join(words[-l:])
elif self.mode == 'mid':
prompt = sep.join(words[:l]) + sep.join(words[-l:])
elif self.mode == 'rear':
prompt = sep.join(words[:l])
return prompt
class OpenAIAllesAPIN(OpenAI):
"""Model wrapper around OpenAI-AllesAPIN.
Args:
path (str): The name of OpenAI's model.
url (str): URL to AllesAPIN.
key (str): AllesAPIN key.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
is_api: bool = True
def __init__(self,
path: str,
url: str,
key: str,
temperature: float = 1.0,
query_per_second: int = 1,
rpm_verbose: bool = False,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
rpm_verbose=rpm_verbose,
meta_template=meta_template,
retry=retry)
self.url = url
self.temperature = temperature
self.headers = {
'alles-apin-token': key,
'content-type': 'application/json',
}
def _generate(self, input: str or PromptList, max_out_len: int,
temperature: float) -> str:
"""Generate results given an input.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
elif item['role'] == 'SYSTEM':
msg['role'] = 'system'
messages.append(msg)
# model can be response with user and system
# when it comes with agent involved.
assert msg['role'] in ['user', 'system']
data = {
'model': self.path,
'messages': messages,
'temperature': temperature
}
for _ in range(self.retry):
self.wait()
raw_response = requests.post(self.url,
headers=self.headers,
data=json.dumps(data))
try:
response = raw_response.json()
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
time.sleep(1)
continue
if raw_response.status_code == 200 and response[
'msgCode'] == '10000':
data = response['data']
choices = data['choices']
if choices is None:
self.logger.error(data)
else:
return choices[0]['message']['content'].strip()
try:
match = re.match(r'Error code: \d+ - (.*)', response['data'])
err = eval(match.group(1))['error']
if err['code'] == 'content_filter' and err['status'] == 400:
return err['message']
except Exception:
pass
self.logger.error(response['msg'])
self.logger.error(response)
time.sleep(1)
raise RuntimeError('API call failed.')
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
enc = self.tiktoken.encoding_for_model(self.path)
return len(enc.encode(prompt))