|
"""Direct Generation Inferencer.""" |
|
|
|
import os |
|
import os.path as osp |
|
from typing import List, Optional |
|
|
|
import mmengine |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from opencompass.models.base import BaseModel |
|
from opencompass.registry import (ICL_EVALUATORS, ICL_INFERENCERS, |
|
TEXT_POSTPROCESSORS) |
|
|
|
from ..icl_prompt_template import PromptTemplate |
|
from ..icl_retriever import BaseRetriever |
|
from ..utils.logging import get_logger |
|
from .icl_base_inferencer import BaseInferencer, GenInferencerOutputHandler |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@ICL_INFERENCERS.register_module() |
|
class AttackInferencer(BaseInferencer): |
|
"""Generation Inferencer class to directly evaluate by generation. |
|
|
|
Attributes: |
|
model (:obj:`BaseModelWrapper`, optional): The module to inference. |
|
max_out_len (:obj:`int`, optional): Maximum number of tokenized words |
|
of the output. |
|
adv_key (:obj:`str`): Prompt key in template to be attacked. |
|
metric_key (:obj:`str`): Metric key to be returned and compared. |
|
Defaults to `accuracy`. |
|
max_seq_len (:obj:`int`, optional): Maximum number of tokenized words |
|
allowed by the LM. |
|
batch_size (:obj:`int`, optional): Batch size for the |
|
:obj:`DataLoader`. |
|
output_json_filepath (:obj:`str`, optional): File path for output |
|
`JSON` file. |
|
output_json_filename (:obj:`str`, optional): File name for output |
|
`JSON` file. |
|
gen_field_replace_token (:obj:`str`, optional): Used to replace the |
|
generation field token when generating prompts. |
|
save_every (:obj:`int`, optional): Save intermediate results every |
|
`save_every` iters. Defaults to 1. |
|
generation_kwargs (:obj:`Dict`, optional): Parameters for the |
|
:obj:`model.generate()` method. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: BaseModel, |
|
max_out_len: int, |
|
adv_key: str, |
|
metric_key: str = 'accuracy', |
|
max_seq_len: Optional[int] = None, |
|
batch_size: Optional[int] = 1, |
|
gen_field_replace_token: Optional[str] = '', |
|
output_json_filepath: Optional[str] = './icl_inference_output', |
|
output_json_filename: Optional[str] = 'predictions', |
|
save_every: Optional[int] = 1, |
|
dataset_cfg: Optional[List[int]] = None, |
|
**kwargs) -> None: |
|
super().__init__( |
|
model=model, |
|
max_seq_len=max_seq_len, |
|
batch_size=batch_size, |
|
output_json_filename=output_json_filename, |
|
output_json_filepath=output_json_filepath, |
|
**kwargs, |
|
) |
|
|
|
self.adv_key = adv_key |
|
self.metric_key = metric_key |
|
self.dataset_cfg = dataset_cfg |
|
self.eval_cfg = dataset_cfg['eval_cfg'] |
|
self.output_column = dataset_cfg['reader_cfg']['output_column'] |
|
self.gen_field_replace_token = gen_field_replace_token |
|
self.max_out_len = max_out_len |
|
|
|
if self.model.is_api and save_every is None: |
|
save_every = 1 |
|
self.save_every = save_every |
|
|
|
def predict(self, adv_prompt) -> List: |
|
|
|
output_handler = GenInferencerOutputHandler() |
|
|
|
|
|
output_json_filepath = self.output_json_filepath |
|
|
|
output_json_filename = self.output_json_filename |
|
|
|
|
|
ice_idx_list = self.retriever.retrieve() |
|
|
|
|
|
prompt_list, label_list = self.get_generation_prompt_list_from_retriever_indices( |
|
ice_idx_list, {self.adv_key: adv_prompt}, |
|
self.retriever, |
|
self.gen_field_replace_token, |
|
max_seq_len=self.max_seq_len, |
|
ice_template=self.ice_template, |
|
prompt_template=self.prompt_template) |
|
|
|
|
|
ds_reader = self.retriever.dataset_reader |
|
if ds_reader.output_column: |
|
gold_ans = ds_reader.dataset['test'][ds_reader.output_column] |
|
prompt_list = list(zip(prompt_list, gold_ans)) |
|
|
|
|
|
|
|
index = 0 |
|
tmp_json_filepath = os.path.join(output_json_filepath, |
|
'tmp_' + output_json_filename) |
|
if osp.exists(tmp_json_filepath): |
|
|
|
tmp_result_dict = mmengine.load(tmp_json_filepath) |
|
output_handler.results_dict = tmp_result_dict |
|
index = len(tmp_result_dict) |
|
|
|
|
|
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size) |
|
|
|
|
|
logger.info('Starting inference process...') |
|
for datum in tqdm(dataloader, disable=not self.is_main_process): |
|
if ds_reader.output_column: |
|
entry, golds = list(zip(*datum)) |
|
else: |
|
entry = datum |
|
golds = [None for _ in range(len(entry))] |
|
|
|
with torch.no_grad(): |
|
parsed_entries = self.model.parse_template(entry, mode='gen') |
|
results = self.model.generate_from_template( |
|
entry, max_out_len=self.max_out_len) |
|
generated = results |
|
|
|
|
|
for prompt, prediction, gold in zip(parsed_entries, generated, |
|
golds): |
|
output_handler.save_results(prompt, |
|
prediction, |
|
index, |
|
gold=gold) |
|
index = index + 1 |
|
|
|
|
|
if (self.save_every is not None and index % self.save_every == 0 |
|
and self.is_main_process): |
|
output_handler.write_to_json(output_json_filepath, |
|
'tmp_' + output_json_filename) |
|
|
|
|
|
if self.is_main_process: |
|
os.makedirs(output_json_filepath, exist_ok=True) |
|
output_handler.write_to_json(output_json_filepath, |
|
output_json_filename) |
|
if osp.exists(tmp_json_filepath): |
|
os.remove(tmp_json_filepath) |
|
|
|
pred_strs = [ |
|
sample['prediction'] |
|
for sample in output_handler.results_dict.values() |
|
] |
|
|
|
if 'pred_postprocessor' in self.eval_cfg: |
|
kwargs = self.eval_cfg['pred_postprocessor'].copy() |
|
proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type')) |
|
pred_strs = [proc(s, **kwargs) for s in pred_strs] |
|
|
|
icl_evaluator = ICL_EVALUATORS.build(self.eval_cfg['evaluator']) |
|
result = icl_evaluator.score(predictions=pred_strs, |
|
references=label_list) |
|
score = result.get(self.metric_key) |
|
|
|
return score / 100 if score > 1 else score |
|
|
|
def get_generation_prompt_list_from_retriever_indices( |
|
self, |
|
ice_idx_list: List[List[int]], |
|
extra_prompt: dict, |
|
retriever: BaseRetriever, |
|
gen_field_replace_token: str, |
|
max_seq_len: Optional[int] = None, |
|
ice_template: Optional[PromptTemplate] = None, |
|
prompt_template: Optional[PromptTemplate] = None): |
|
prompt_list = [] |
|
label_list = [] |
|
for idx, ice_idx in enumerate(ice_idx_list): |
|
ice = retriever.generate_ice(ice_idx, ice_template=ice_template) |
|
prompt = retriever.generate_prompt_for_adv_generate_task( |
|
idx, |
|
ice, |
|
extra_prompt, |
|
gen_field_replace_token=gen_field_replace_token, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
label = retriever.test_ds[idx][self.output_column] |
|
label_list.append(label) |
|
if max_seq_len is not None: |
|
prompt_token_num = self.model.get_token_len_from_template( |
|
prompt, mode='gen') |
|
while len(ice_idx) > 0 and prompt_token_num > max_seq_len: |
|
ice_idx = ice_idx[:-1] |
|
ice = retriever.generate_ice(ice_idx, |
|
ice_template=ice_template) |
|
prompt = retriever.generate_prompt_for_adv_generate_task( |
|
idx, |
|
ice, |
|
extra_prompt, |
|
gen_field_replace_token=gen_field_replace_token, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
prompt_token_num = self.model.get_token_len_from_template( |
|
prompt, mode='gen') |
|
prompt_list.append(prompt) |
|
return prompt_list, label_list |
|
|