|
"""PPL Inferencer.""" |
|
|
|
import os |
|
from typing import List, Optional |
|
|
|
import torch |
|
from tqdm import trange |
|
|
|
from opencompass.models.base import BaseModel |
|
from opencompass.registry import ICL_INFERENCERS |
|
|
|
from ..icl_prompt_template import PromptTemplate |
|
from ..icl_retriever import BaseRetriever |
|
from ..utils import get_logger |
|
from .icl_base_inferencer import BaseInferencer, PPLInferencerOutputHandler |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@ICL_INFERENCERS.register_module() |
|
class PPLInferencer(BaseInferencer): |
|
"""PPL Inferencer class to evaluate by perplexity. |
|
|
|
Attributes: |
|
model (:obj:`BaseModel`, optional): The module to inference. |
|
max_seq_len (:obj:`int`): Maximum number of tokenized words allowed by |
|
the LM. |
|
batch_size (:obj:`int`, optional): Batch size for the :obj:`DataLoader` |
|
output_json_filepath (:obj:`str`, optional): File path for output |
|
`JSON` file. |
|
output_json_filename (:obj:`str`, optional): File name for output |
|
`JSON` file. |
|
labels (:obj:`List`, optional): A list of labels for all classes. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: BaseModel, |
|
max_seq_len: Optional[int] = None, |
|
batch_size: Optional[int] = 1, |
|
output_json_filepath: Optional[str] = './icl_inference_output', |
|
output_json_filename: Optional[str] = 'predictions', |
|
labels: Optional[List] = None, |
|
**kwargs) -> None: |
|
super().__init__( |
|
model=model, |
|
max_seq_len=max_seq_len, |
|
batch_size=batch_size, |
|
output_json_filename=output_json_filename, |
|
output_json_filepath=output_json_filepath, |
|
**kwargs, |
|
) |
|
|
|
self.labels = labels |
|
|
|
def inference(self, |
|
retriever: BaseRetriever, |
|
ice_template: Optional[PromptTemplate] = None, |
|
prompt_template: Optional[PromptTemplate] = None, |
|
output_json_filepath: Optional[str] = None, |
|
output_json_filename: Optional[str] = None, |
|
normalizing_str: Optional[str] = None) -> List: |
|
|
|
output_handler = PPLInferencerOutputHandler() |
|
|
|
sub_predictions = [] |
|
ppl = [] |
|
ice = [] |
|
|
|
if output_json_filepath is None: |
|
output_json_filepath = self.output_json_filepath |
|
if output_json_filename is None: |
|
output_json_filename = self.output_json_filename |
|
|
|
|
|
ice_idx_list = retriever.retrieve() |
|
|
|
|
|
if self.labels is None: |
|
labels = retriever.get_labels(ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
else: |
|
labels = self.labels |
|
|
|
|
|
for idx in range(len(ice_idx_list)): |
|
ice.append( |
|
retriever.generate_ice(ice_idx_list[idx], |
|
ice_template=ice_template)) |
|
output_handler.save_ice(self.model.parse_template(ice, mode='ppl')) |
|
|
|
|
|
for label in labels: |
|
index = 0 |
|
prompt_list = [] |
|
sub_ppl_list = [] |
|
token_num_list = [] |
|
normalizing_prompt_list = [] |
|
context_length_list = [] |
|
|
|
|
|
|
|
for idx in range(len(ice_idx_list)): |
|
prompt = retriever.generate_label_prompt( |
|
idx, |
|
ice[idx], |
|
label, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template, |
|
remain_sep=normalizing_str is not None) |
|
if self.max_seq_len is not None: |
|
prompt_token_num = self.model.get_token_len_from_template( |
|
prompt, mode='ppl') |
|
while len(ice_idx_list[idx] |
|
) > 0 and prompt_token_num > self.max_seq_len: |
|
ice_idx_list[idx] = ice_idx_list[idx][:-1] |
|
ice[idx] = retriever.generate_ice( |
|
ice_idx_list[idx], ice_template=ice_template) |
|
prompt = retriever.generate_label_prompt( |
|
idx, |
|
ice[idx], |
|
label, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
prompt_token_num = self.model.get_token_len_from_template( |
|
prompt, mode='ppl') |
|
|
|
if normalizing_str is not None: |
|
assert isinstance(prompt, str), \ |
|
'Prompt must be a string when normalizing_str is set.' |
|
prompt_sep = prompt |
|
if prompt_template is not None: |
|
sep_token = prompt_template.sep_token |
|
else: |
|
sep_token = ice_template.sep_token |
|
sep_pos = prompt_sep.find(sep_token) |
|
|
|
context = prompt_sep[0:sep_pos] |
|
answer = prompt_sep[sep_pos:].replace(sep_token, '') |
|
prompt = context + answer |
|
normalizing_prompt = normalizing_str + answer |
|
|
|
context_length_list.append( |
|
self.model.get_token_len_from_template(context, |
|
mode='ppl')) |
|
normalizing_prompt_list.append(normalizing_prompt) |
|
prompt_list.append(prompt) |
|
token_num_list.append(prompt_token_num) |
|
|
|
if normalizing_str is not None: |
|
normalizing_str_len = self.model.get_token_len_from_template( |
|
normalizing_str, mode='ppl') |
|
|
|
|
|
logger.info(f"Calculating PPL for prompts labeled '{label}'") |
|
for idx in trange(0, |
|
len(prompt_list), |
|
self.batch_size, |
|
disable=not self.is_main_process): |
|
sub_prompt_list = prompt_list[idx:idx + self.batch_size] |
|
if normalizing_str is not None: |
|
sub_context_length_list = context_length_list[idx:idx + |
|
self. |
|
batch_size] |
|
sub_normalizing_prompt_list = normalizing_prompt_list[ |
|
idx:idx + self.batch_size] |
|
|
|
with torch.no_grad(): |
|
if normalizing_str is not None: |
|
res1 = self.model.get_ppl_from_template( |
|
sub_prompt_list, |
|
mask_length=sub_context_length_list) |
|
res2 = self.model.get_ppl_from_template( |
|
sub_normalizing_prompt_list, |
|
mask_length=[ |
|
normalizing_str_len |
|
for i in range(len(sub_prompt_list)) |
|
]) |
|
sub_res = res1 - res2 |
|
else: |
|
sub_res = self.model.get_ppl_from_template( |
|
sub_prompt_list).tolist() |
|
for res, prompt in zip( |
|
sub_res, |
|
self.model.parse_template(sub_prompt_list, |
|
mode='ppl')): |
|
sub_ppl_list.append(res) |
|
ice_str = self.model.parse_template(ice[idx], mode='ppl') |
|
output_handler.save_prompt_and_ppl( |
|
label, prompt.replace(ice_str, ''), prompt, res, index) |
|
output_handler.results_dict[str( |
|
index)][f'label: {str(label)}'][ |
|
'BPB'] = res * token_num_list[index] / len( |
|
prompt.replace(ice_str, '').encode()) |
|
index = index + 1 |
|
ppl.append(sub_ppl_list) |
|
|
|
|
|
ppl = list(zip(*ppl)) |
|
for single_ppl in ppl: |
|
sub_predictions.append(labels[single_ppl.index(min(single_ppl))]) |
|
output_handler.save_predictions(sub_predictions) |
|
|
|
|
|
ds_reader = retriever.dataset_reader |
|
if ds_reader.output_column: |
|
golds = ds_reader.dataset['test'][ds_reader.output_column] |
|
output_handler.save_golds(golds) |
|
|
|
|
|
if self.is_main_process: |
|
os.makedirs(output_json_filepath, exist_ok=True) |
|
output_handler.write_to_json(output_json_filepath, |
|
output_json_filename) |
|
|
|
return [ |
|
sample['prediction'] |
|
for sample in output_handler.results_dict.values() |
|
] |
|
|