TwT-6's picture
Upload 2667 files
256a159 verified
"""Tree-of-Thought Generation Inferencer."""
import itertools
import os
import os.path as osp
from typing import List, Optional
import mmengine
import numpy as np
import torch
from tqdm import tqdm
from opencompass.models.base import BaseModel
from opencompass.registry import ICL_INFERENCERS, TOT_WRAPPER
from ..icl_prompt_template import PromptTemplate
from ..icl_retriever import BaseRetriever
from ..utils.logging import get_logger
from .icl_gen_inferencer import GenInferencer, GenInferencerOutputHandler
logger = get_logger(__name__)
@ICL_INFERENCERS.register_module()
class ToTInferencer(GenInferencer):
"""Tree-of-Thought Inferencer class to evaluate by tree style reasoning
paths.
Doc: https://opencompass.readthedocs.io/en/latest/prompt/
chain_of_thought.html
Official tot paper: https://arxiv.org/pdf/2305.10601.pdf
Attributes:
model (:obj:`BaseModelWrapper`, optional): The module to inference.
max_seq_len (:obj:`int`, optional): Maximum number of tokenized words
allowed by the LM.
batch_size (:obj:`int`, optional): Batch size for the
:obj:`DataLoader`.
output_json_filepath (:obj:`str`, optional): File path for output
`JSON` file.
output_json_filename (:obj:`str`, optional): File name for output
`JSON` file.
gen_field_replace_token (:obj:`str`, optional): Used to replace the
generation field token when generating prompts.
save_every (:obj:`int`, optional): Save intermediate results every
`save_every` iters. Defaults to 1.
generation_kwargs (:obj:`Dict`, optional): Parameters for the
:obj:`model.generate()` method.
naive_run (:obj:`bool`): if True, run naive IO/CoT sampling instead of
ToT + BFS.
prompt_wrapper (:obj:`dict`): wrapper for prompts
prompt_sample (:obj:`str`): (choices=[standard, cot]) sampling prompt
method_generate (:obj:`str`): (choices=[sample, propose])
thought generator,whether to sample independent thoughts (used in
Creative Writing task) or propose sequential thoughts (used in Game
of 24)
method_evaluate (:obj:`str`): (choices=[value, vote]) state evaluator,
whether to use the value states independently (used in Game of 24)
or vote on states together (used in Creative Writing)
n_generate_sample (:obj:`int`): number of times to prompt for
thought generation
n_evaluate_sample(:obj:`int`): number of times to prompt for
state evaluation
n_select_sample (:obj:`int`): number of states to keep from each step
(i.e. b in the Tree-of-Thought paper's ToT + BFS algorithm)
"""
def __init__(
self,
model: BaseModel,
max_out_len: int,
max_seq_len: Optional[int] = None,
batch_size: Optional[int] = 1,
gen_field_replace_token: Optional[str] = '',
output_json_filepath: Optional[str] = './icl_inference_output',
output_json_filename: Optional[str] = 'predictions',
save_every: Optional[int] = 1,
naive_run: bool = False,
prompt_wrapper: dict = {},
prompt_sample: str = 'standard',
method_generate: str = 'sample',
method_evaluate: str = 'value',
method_select: str = 'greedy',
n_generate_sample: int = 1,
n_evaluate_sample: int = 1,
n_select_sample: int = 1,
generation_kwargs: dict = {},
**kwargs) -> None:
super().__init__(
model=model,
max_out_len=max_out_len,
max_seq_len=max_seq_len,
batch_size=batch_size,
gen_field_replace_token=gen_field_replace_token,
output_json_filename=output_json_filename,
output_json_filepath=output_json_filepath,
save_every=save_every,
sc_size=n_evaluate_sample,
**kwargs,
)
self.max_out_len = max_out_len
self.prompt_wrapper = TOT_WRAPPER.build(prompt_wrapper)
self.naive_run = naive_run
self.prompt_sample = prompt_sample
self.method_generate = method_generate
self.method_evaluate = method_evaluate
self.method_select = method_select
self.n_generate_sample = n_generate_sample
self.n_evaluate_sample = n_evaluate_sample
self.n_select_sample = n_select_sample
self.generation_kwargs = generation_kwargs
def get_value(self,
x: str,
y: str,
n_evaluate_sample: int,
cache_value: bool = True) -> str:
"""Get evaluation value of a partial output.
Args:
x (str): The input text to be evaluated.
y (str): The partial output to be evaluated.
n_evaluate_sample (int): Times to evaluate each partial output.
cache_value (bool): Cache to avoid duplicate candidates.
Defaults to True.
Returns:
str: Value of evaluated partial outputs.
"""
value_prompt = self.prompt_wrapper.value_prompt_wrap(x, y)
if cache_value and value_prompt in self.prompt_wrapper.value_cache:
return self.prompt_wrapper.value_cache[value_prompt]
value_outputs = self.model.generate_from_template(
[value_prompt],
max_out_len=self.max_out_len,
num_beams=n_evaluate_sample,
num_return_sequences=n_evaluate_sample,
**self.generation_kwargs)
value = self.prompt_wrapper.value_outputs_unwrap(x, y, value_outputs)
if cache_value:
self.prompt_wrapper.value_cache[value_prompt] = value
return value
def get_values(self,
x: str,
ys: List[str],
n_evaluate_sample: int,
cache_value: bool = True) -> List[str]:
"""Get evaluation values of partial outputs.
Args:
x (str): The input text to be solved.
ys (List[str]): The partial outputs to be evaluated.
n_evaluate_sample (int): Times to evaluate each partial output.
cache_value (bool): Cache to avoid duplicate candidates.
Defaults to True.
Returns:
List[str]: Values of evaluated partial outputs.
"""
values = []
local_value_cache = {}
for y in ys: # each partial output
if y in local_value_cache: # avoid duplicate candidates
value = 0
else:
value = self.get_value(x,
y,
n_evaluate_sample,
cache_value=cache_value)
local_value_cache[y] = value
values.append(value)
return values
def get_votes(self, x: str, ys: List[str],
n_evaluate_sample: int) -> List[str]:
"""Get votes of partial outputs.
Args:
x (str): The input text to be solved.
ys (List[str]): The partial outputs to be evaluated.
n_evaluate_sample (int): Times to evaluate each partial output.
Returns:
List[str]: Values of evaluated partial outputs.
"""
vote_prompt = self.prompt_wrapper.vote_prompt_wrap(x, ys)
vote_outputs = self.model.generate_from_template(
[vote_prompt],
max_out_len=self.max_out_len,
num_beams=n_evaluate_sample,
num_return_sequences=n_evaluate_sample,
**self.generation_kwargs)
values = self.prompt_wrapper.vote_outputs_unwrap(vote_outputs, len(ys))
return values
def get_proposals(self, x: str, y: str) -> List[str]:
"""Get proposal prompts.
Args:
x (str): The input text to be solved.
y (str): The partial output.
Returns:
List[str]: Proposal prompts.
"""
propose_prompt = self.prompt_wrapper.propose_prompt_wrap(x, y)
proposals = self.model.generate_from_template(
[propose_prompt],
max_out_len=self.max_out_len,
num_beams=1,
num_return_sequences=1,
**self.generation_kwargs)[0].split('\n')
return [y + _ + '\n' for _ in proposals]
def get_samples(self, x: str, y: str, n_generate_sample: int,
prompt_sample: str):
"""Get samples from a partial output.
Args:
x (str): The input text to be solved.
y (str): The partial output.
n_generate_sample (int): Times to generate samples.
prompt_sample (str): (choices=[standard, cot]) sampling prompt
Returns:
List[str]: Samples from a partial output.
"""
if prompt_sample == 'standard':
prompt = self.prompt_wrapper.standard_prompt_wrap(x, y)
elif prompt_sample == 'cot':
prompt = self.prompt_wrapper.cot_prompt_wrap(x, y)
else:
raise ValueError(f'prompt_sample {prompt_sample} not recognized')
samples = self.model.generate_from_template(
[prompt],
max_out_len=self.max_out_len,
num_beams=n_generate_sample,
num_return_sequences=n_generate_sample,
**self.generation_kwargs)
return [y + _ for _ in samples]
def tot_solve(self, x: str) -> str:
"""Solve a problem using Tree-of-Thought algorithm.
Args:
x (str): The input text to be solved.
Returns:
str: Final answer of the problem.
"""
ys = [''] # current output candidates
infos = []
for step in range(self.prompt_wrapper.steps):
logger.info(f'\n-- step {str(step)} --\n')
# generation
if self.method_generate == 'sample':
new_ys = [
self.get_samples(x,
y,
self.n_generate_sample,
prompt_sample=self.prompt_sample)
for y in ys
]
elif self.method_generate == 'propose':
new_ys = [self.get_proposals(x, y) for y in ys]
new_ys = list(itertools.chain(*new_ys))
ids = list(range(len(new_ys)))
# evaluation
if self.method_evaluate == 'vote':
values = self.get_votes(x, new_ys, self.n_evaluate_sample)
elif self.method_evaluate == 'value':
values = self.get_values(x, new_ys, self.n_evaluate_sample)
# selection
if self.method_select == 'sample':
ps = np.array(values) / sum(values)
select_ids = np.random.choice(ids,
size=self.n_select_sample,
p=ps).tolist()
elif self.method_select == 'greedy':
select_ids = sorted(ids, key=lambda x: values[x],
reverse=True)[:self.n_select_sample]
select_new_ys = [new_ys[select_id] for select_id in select_ids]
# log
sorted_new_ys, sorted_values = zip(
*sorted(zip(new_ys, values), key=lambda x: x[1], reverse=True))
logger.info(f'-- new_ys --: {sorted_new_ys}\n-- sol values --: '
f'{sorted_values}\n-- choices --: {select_new_ys}\n')
infos.append({
'step': step,
'x': x,
'ys': ys,
'new_ys': new_ys,
'values': values,
'select_new_ys': select_new_ys
})
ys = select_new_ys
logger.info(ys)
return ys
def inference(self,
retriever: BaseRetriever,
ice_template: Optional[PromptTemplate] = None,
prompt_template: Optional[PromptTemplate] = None,
output_json_filepath: Optional[str] = None,
output_json_filename: Optional[str] = None) -> List:
# 1. Preparation for output logs
output_handler = GenInferencerOutputHandler()
if output_json_filepath is None:
output_json_filepath = self.output_json_filepath
if output_json_filename is None:
output_json_filename = self.output_json_filename
# 2. Get results of retrieval process
ice_idx_list = retriever.retrieve()
# 3. Generate prompts for testing input
prompt_list = self.get_generation_prompt_list_from_retriever_indices(
ice_idx_list,
retriever,
self.gen_field_replace_token,
max_seq_len=self.max_seq_len,
ice_template=ice_template,
prompt_template=prompt_template)
# 3.1 Fetch and zip prompt & gold answer if output column exists
ds_reader = retriever.dataset_reader
if ds_reader.output_column:
gold_ans = ds_reader.dataset['test'][ds_reader.output_column]
prompt_list = list(zip(prompt_list, gold_ans))
# Create tmp json file for saving intermediate results and future
# resuming
index = 0
tmp_json_filepath = os.path.join(output_json_filepath,
'tmp_' + output_json_filename)
if osp.exists(tmp_json_filepath):
# TODO: move resume to output handler
tmp_result_dict = mmengine.load(tmp_json_filepath)
output_handler.results_dict = tmp_result_dict
index = len(tmp_result_dict)
# 4. Wrap prompts with Dataloader
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size)
# 5. Inference for prompts in each batch
logger.info('Starting ToT inference process...')
for datum in tqdm(dataloader, disable=not self.is_main_process):
if ds_reader.output_column:
entries, golds = list(zip(*datum))
else:
entries = datum
golds = [None for _ in range(len(entries))]
# 5-1. Inference with ToT and local model
with torch.no_grad():
parsed_entries = self.model.parse_template(entries, mode='gen')
generated = [self.tot_solve(entry) for entry in entries]
# 5-2. Save current output
for prompt, prediction, gold in zip(parsed_entries, generated,
golds):
output_handler.save_results(prompt,
prediction,
index,
gold=gold)
index = index + 1
# 5-3. Save intermediate results
if (self.save_every is not None and index % self.save_every == 0
and self.is_main_process):
output_handler.write_to_json(output_json_filepath,
'tmp_' + output_json_filename)
# 6. Output
if self.is_main_process:
os.makedirs(output_json_filepath, exist_ok=True)
output_handler.write_to_json(output_json_filepath,
output_json_filename)
if osp.exists(tmp_json_filepath):
os.remove(tmp_json_filepath)
return [
sample['prediction']
for sample in output_handler.results_dict.values()
]