TwT-6's picture
Upload 2667 files
256a159 verified
"""DPP Retriever."""
import math
from typing import Optional
import numpy as np
import tqdm
from opencompass.openicl.icl_retriever.icl_topk_retriever import TopkRetriever
from opencompass.openicl.utils.logging import get_logger
logger = get_logger(__name__)
class DPPRetriever(TopkRetriever):
"""DPP In-context Learning Retriever, subclass of `TopkRetriever`. Two-
stage DPP is used, where first stage is to get results of TopK to reduce
candidate sets. Chechout https://arxiv.org/abs/2302.05698 for details.
**WARNING**: This class has not been tested thoroughly. Please use it with
caution.
"""
model = None
def __init__(self,
dataset,
ice_separator: Optional[str] = '\n',
ice_eos_token: Optional[str] = '\n',
ice_num: Optional[int] = 1,
sentence_transformers_model_name: Optional[
str] = 'all-mpnet-base-v2',
tokenizer_name: Optional[str] = 'gpt2-xl',
batch_size: Optional[int] = 1,
candidate_num: Optional[int] = 1,
seed: Optional[int] = 1,
scale_factor: Optional[float] = 0.1) -> None:
super().__init__(dataset, ice_separator, ice_eos_token, ice_num,
sentence_transformers_model_name, tokenizer_name,
batch_size)
self.candidate_num = candidate_num
self.seed = seed
self.scale_factor = scale_factor
def dpp_search(self):
res_list = self.forward(self.dataloader,
process_bar=True,
information='Embedding test set...')
rtr_idx_list = [[] for _ in range(len(res_list))]
logger.info('Retrieving data for test set...')
for entry in tqdm.tqdm(res_list, disable=not self.is_main_process):
idx = entry['metadata']['id']
# get TopK results
embed = np.expand_dims(entry['embed'], axis=0)
near_ids = np.array(
self.index.search(embed, self.candidate_num)[1][0].tolist())
# DPP stage
near_reps, rel_scores, kernel_matrix = self.get_kernel(
embed, near_ids.tolist())
# MAP inference
samples_ids = fast_map_dpp(kernel_matrix, self.ice_num)
# ordered by relevance score
samples_scores = np.array([rel_scores[i] for i in samples_ids])
samples_ids = samples_ids[(-samples_scores).argsort()].tolist()
rtr_sub_list = [int(near_ids[i]) for i in samples_ids]
rtr_idx_list[idx] = rtr_sub_list
return rtr_idx_list
def retrieve(self):
return self.dpp_search()
def get_kernel(self, embed, candidates):
near_reps = np.stack(
[self.index.index.reconstruct(i) for i in candidates], axis=0)
# normalize first
embed = embed / np.linalg.norm(embed)
near_reps = near_reps / np.linalg.norm(
near_reps, keepdims=True, axis=1)
# to make kernel-matrix non-negative
rel_scores = np.matmul(embed, near_reps.T)[0]
rel_scores = (rel_scores + 1) / 2
# to prevent overflow error
rel_scores -= rel_scores.max()
# to balance relevance and diversity
rel_scores = np.exp(rel_scores / (2 * self.scale_factor))
# to make kernel-matrix non-negative
sim_matrix = np.matmul(near_reps, near_reps.T)
sim_matrix = (sim_matrix + 1) / 2
kernel_matrix = rel_scores[None] * sim_matrix * rel_scores[:, None]
return near_reps, rel_scores, kernel_matrix
def fast_map_dpp(kernel_matrix, max_length):
"""fast implementation of the greedy algorithm reference:
https://github.com/laming-chen/fast-map-dpp/blob/master/dpp_test.py
paper: Fast Greedy MAP Inference for Determinantal Point Process to Improve
Recommendation Diversity
"""
item_size = kernel_matrix.shape[0]
cis = np.zeros((max_length, item_size))
di2s = np.copy(np.diag(kernel_matrix))
selected_items = list()
selected_item = np.argmax(di2s)
selected_items.append(int(selected_item))
while len(selected_items) < max_length:
k = len(selected_items) - 1
ci_optimal = cis[:k, selected_item]
di_optimal = math.sqrt(di2s[selected_item])
elements = kernel_matrix[selected_item, :]
eis = (elements - np.dot(ci_optimal, cis[:k, :])) / di_optimal
cis[k, :] = eis
di2s -= np.square(eis)
selected_item = np.argmax(di2s)
selected_items.append(int(selected_item))
return selected_items