|
|
|
import csv |
|
import os |
|
import os.path as osp |
|
import re |
|
from collections import defaultdict |
|
from datetime import datetime |
|
|
|
import numpy as np |
|
from mmengine import ConfigDict |
|
|
|
try: |
|
from prettytable import from_csv |
|
except ImportError: |
|
from_csv = None |
|
|
|
from opencompass.utils import model_abbr_from_cfg |
|
|
|
from .compass_arena import CompassArenaSummarizer |
|
from .utils import get_judgeanswer_and_reference, get_outdir |
|
|
|
|
|
def post_process_mtbench_pair(judgement: str): |
|
"""Input a string like below: |
|
|
|
xxx[[A]]xxx, and extract the judge |
|
""" |
|
pattern = r'\[([A-C]+)\]' |
|
matched_result = re.findall(pattern, judgement) |
|
if matched_result: |
|
return matched_result[0] |
|
else: |
|
return None |
|
|
|
|
|
def post_process_mtbench_single(judgement: str): |
|
"""Input a string like below: |
|
|
|
xxx[[5]]xxx, and extract the score |
|
""" |
|
pattern = r'Rating:\s*\[\[([\d.]+)\]\]' |
|
matched_result = re.findall(pattern, judgement) |
|
if matched_result: |
|
score = float(matched_result[0]) |
|
else: |
|
return None |
|
return {'score': score} |
|
|
|
|
|
def get_capability_results( |
|
judged_answers, |
|
references, |
|
fout, |
|
fout_flag, |
|
model, |
|
): |
|
capability_ratings = defaultdict(int) |
|
capability_counts = defaultdict(int) |
|
for ans, ref in zip(judged_answers, references): |
|
capability_ratings['total'] += ans['score'] |
|
capability_counts['total'] += 1 |
|
capability_ratings[ref['capability']] += ans['score'] |
|
capability_counts[ref['capability']] += 1 |
|
|
|
capability_avg_ratings = defaultdict(float) |
|
|
|
for capability, total_score in capability_ratings.items(): |
|
capability_avg_ratings[ |
|
capability] = total_score / capability_counts[capability] |
|
columns = list(capability_avg_ratings.keys()) |
|
columns.insert(0, columns.pop(columns.index('total'))) |
|
with open(fout, 'a+', newline='') as csvfile: |
|
writer = csv.writer(csvfile) |
|
if fout_flag == 0: |
|
writer.writerow(['model'] + columns) |
|
writer.writerow([model] + |
|
[capability_avg_ratings[column] for column in columns]) |
|
|
|
|
|
class MTBenchSummarizer(CompassArenaSummarizer): |
|
"""Do the subjectivity analyze based on evaluation results. |
|
|
|
Args: |
|
config (ConfigDict): The configuration object of the evaluation task. |
|
It's expected to be filled out at runtime. |
|
""" |
|
|
|
def __init__(self, config: ConfigDict, judge_type='single') -> None: |
|
self.judge_type = judge_type |
|
self.tasks = [] |
|
self.cfg = config |
|
if self.judge_type == 'single': |
|
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] |
|
self.eval_model_abbrs = [ |
|
model_abbr_from_cfg(model) for model in self.eval_model_cfgs |
|
] |
|
elif self.judge_type == 'pair': |
|
self.base_models = self.cfg['eval']['partitioner']['base_models'] |
|
self.compare_models = self.cfg['eval']['partitioner'][ |
|
'compare_models'] |
|
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model']) |
|
self.judge_map = { |
|
'single': post_process_mtbench_single, |
|
'pair': post_process_mtbench_pair |
|
} |
|
self.judge_function = self.judge_map[self.judge_type] |
|
|
|
def summarize(self, |
|
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): |
|
"""Summarize the subjectivity analysis based on evaluation results. |
|
|
|
Args: |
|
time_str (str): Timestamp for file naming. |
|
|
|
Returns: |
|
pd.DataFrame: The summary results. |
|
""" |
|
if self.judge_type == 'single': |
|
dataset_cfgs = self.cfg['datasets'] |
|
output_dir, results_folder = get_outdir(self.cfg, time_str) |
|
fout_flag = 0 |
|
for eval_model_abbr in self.eval_model_abbrs: |
|
subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr |
|
subdir_path = os.path.join(results_folder, subdir) |
|
if os.path.isdir(subdir_path): |
|
model, judge_model = eval_model_abbr, self.judge_abbr |
|
fout = osp.join( |
|
output_dir, |
|
'judged-by--' + judge_model + '-capability.csv') |
|
for dataset in dataset_cfgs: |
|
judged_answers, references = get_judgeanswer_and_reference( |
|
dataset, subdir_path, self.judge_function) |
|
get_capability_results(judged_answers, references, |
|
fout, fout_flag, model) |
|
fout_flag += 1 |
|
else: |
|
print(subdir_path + ' is not exist! please check!') |
|
with open(fout, 'r') as f: |
|
x = from_csv(f) |
|
print(x) |
|
elif self.judge_type == 'pair': |
|
super().summarize() |
|
|