TwT-6's picture
Upload 2667 files
256a159 verified
# flake8: noqa: E501
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
import numpy as np
from mmengine import ConfigDict
try:
from prettytable import from_csv
except ImportError:
from_csv = None
from opencompass.utils import model_abbr_from_cfg
from .compass_arena import CompassArenaSummarizer
from .utils import get_judgeanswer_and_reference, get_outdir
def post_process_mtbench_pair(judgement: str):
"""Input a string like below:
xxx[[A]]xxx, and extract the judge
"""
pattern = r'\[([A-C]+)\]'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None
def post_process_mtbench_single(judgement: str):
"""Input a string like below:
xxx[[5]]xxx, and extract the score
"""
pattern = r'Rating:\s*\[\[([\d.]+)\]\]'
matched_result = re.findall(pattern, judgement)
if matched_result:
score = float(matched_result[0])
else:
return None
return {'score': score}
def get_capability_results(
judged_answers,
references,
fout,
fout_flag,
model,
):
capability_ratings = defaultdict(int)
capability_counts = defaultdict(int)
for ans, ref in zip(judged_answers, references):
capability_ratings['total'] += ans['score']
capability_counts['total'] += 1
capability_ratings[ref['capability']] += ans['score']
capability_counts[ref['capability']] += 1
capability_avg_ratings = defaultdict(float)
for capability, total_score in capability_ratings.items():
capability_avg_ratings[
capability] = total_score / capability_counts[capability]
columns = list(capability_avg_ratings.keys())
columns.insert(0, columns.pop(columns.index('total')))
with open(fout, 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
if fout_flag == 0:
writer.writerow(['model'] + columns)
writer.writerow([model] +
[capability_avg_ratings[column] for column in columns])
class MTBenchSummarizer(CompassArenaSummarizer):
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, judge_type='single') -> None:
self.judge_type = judge_type
self.tasks = []
self.cfg = config
if self.judge_type == 'single':
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
self.eval_model_abbrs = [
model_abbr_from_cfg(model) for model in self.eval_model_cfgs
]
elif self.judge_type == 'pair':
self.base_models = self.cfg['eval']['partitioner']['base_models']
self.compare_models = self.cfg['eval']['partitioner'][
'compare_models']
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model'])
self.judge_map = {
'single': post_process_mtbench_single,
'pair': post_process_mtbench_pair
}
self.judge_function = self.judge_map[self.judge_type]
def summarize(self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
if self.judge_type == 'single':
dataset_cfgs = self.cfg['datasets']
output_dir, results_folder = get_outdir(self.cfg, time_str)
fout_flag = 0
for eval_model_abbr in self.eval_model_abbrs:
subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
model, judge_model = eval_model_abbr, self.judge_abbr
fout = osp.join(
output_dir,
'judged-by--' + judge_model + '-capability.csv')
for dataset in dataset_cfgs:
judged_answers, references = get_judgeanswer_and_reference(
dataset, subdir_path, self.judge_function)
get_capability_results(judged_answers, references,
fout, fout_flag, model)
fout_flag += 1
else:
print(subdir_path + ' is not exist! please check!')
with open(fout, 'r') as f:
x = from_csv(f)
print(x)
elif self.judge_type == 'pair':
super().summarize()