TwT-6's picture
Upload 2667 files
256a159 verified
# flake8: noqa
# yapf: disable
import getpass
import os.path as osp
from datetime import datetime
from typing import List, Optional
import mmengine
import pytz
import tabulate
from mmengine import ConfigDict
from opencompass.utils import (LarkReporter, dataset_abbr_from_cfg,
get_infer_output_path, get_logger,
model_abbr_from_cfg)
from opencompass.utils.prompt import get_prompt_hash
METRIC_WHITELIST = ['score', 'auc_score', 'accuracy', 'humaneval_pass@1', 'rouge1', 'avg_toxicity_score', 'bleurt_diff', 'matthews_correlation', 'truth']
METRIC_BLACKLIST = ['bp', 'sys_len', 'ref_len']
class PretrainSummarizer:
""""""
def __init__(self, config: ConfigDict, dataset_abbrs: Optional[List[str]] = None, summary_groups: List = [], prompt_db = None) -> None:
self.tasks = []
self.cfg = config
self.logger = get_logger()
# Enable lark bot if lark_url is presented
self.lark_reporter = None
if self.cfg.get('lark_bot_url', None):
self.lark_reporter = LarkReporter(self.cfg['lark_bot_url'])
def summarize(
self,
output_path: str = None,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): # noqa
model_cfgs = self.cfg['models']
dataset_cfgs = self.cfg['datasets']
summarizer_cfg = self.cfg.get('summarizer', {})
work_dir = self.cfg['work_dir']
# pick up results
raw_results = {}
parsed_results = {}
dataset_metrics = {}
model_abbrs = [model_abbr_from_cfg(model) for model in model_cfgs]
for model in model_cfgs:
model_abbr = model_abbr_from_cfg(model)
parsed_results[model_abbr] = {}
raw_results[model_abbr] = {}
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
filepath = get_infer_output_path(model, dataset, osp.join(work_dir, 'results'))
if not osp.exists(filepath):
continue
result = mmengine.load(filepath)
raw_results[model_abbr][dataset_abbr] = result
if 'error' in result:
self.debug(f'error in {model_abbr} {dataset_abbr} {result["error"]}')
continue
else:
parsed_results[model_abbr][dataset_abbr] = []
dataset_metrics[dataset_abbr] = []
for metric, score in result.items():
if metric not in METRIC_BLACKLIST and isinstance(score, (int, float)):
parsed_results[model_abbr][dataset_abbr].append(score)
dataset_metrics[dataset_abbr].append(metric)
else:
continue
if len(parsed_results[model_abbr][dataset_abbr]) == 0:
self.logger.warning(f'unknown result format: {result}, continue')
del parsed_results[model_abbr][dataset_abbr]
del dataset_metrics[dataset_abbr]
continue
indice = sorted(
list(range(len(dataset_metrics[dataset_abbr]))),
key=lambda i: (
METRIC_WHITELIST.index(dataset_metrics[dataset_abbr][i])
if dataset_metrics[dataset_abbr][i] in METRIC_WHITELIST
else len(METRIC_WHITELIST)
)
)
parsed_results[model_abbr][dataset_abbr] = [parsed_results[model_abbr][dataset_abbr][i] for i in indice]
dataset_metrics[dataset_abbr] = [dataset_metrics[dataset_abbr][i] for i in indice]
# parse eval mode
dataset_eval_mode = {}
for dataset in dataset_cfgs:
inferencer = dataset.get('infer_cfg', {}).get('inferencer', {}).get('type', '')
inferencer = inferencer if isinstance(inferencer, str) else inferencer.__name__
dataset_abbr = dataset_abbr_from_cfg(dataset)
if 'GenInferencer' in inferencer:
dataset_eval_mode[dataset_abbr] = 'gen'
elif 'PPLInferencer' in inferencer:
dataset_eval_mode[dataset_abbr] = 'ppl'
else:
dataset_eval_mode[dataset_abbr] = 'unknown'
self.logger.warning(f'unknown inferencer: {inferencer} - {dataset_abbr}')
# calculate group metrics
summary_groups = summarizer_cfg.get('summary_groups', [])
for sg in summary_groups:
for model_abbr in model_abbrs:
results = {}
eval_modes = []
for dataset_abbr in sg['subsets']:
if dataset_abbr in parsed_results[model_abbr]:
results[dataset_abbr] = parsed_results[model_abbr][dataset_abbr][0]
eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
if len(results) == len(sg['subsets']):
if 'weights' in sg:
numerator = sum(results[k] * sg['weights'][k] for k in sg['weights'])
denominator = sum(sg['weights'].values())
metric = 'weighted_average'
else:
numerator = sum(results[k] for k in results)
denominator = len(results)
metric = 'naive_average'
results[metric] = numerator / denominator
eval_modes = list(set(eval_modes))
eval_mode = eval_modes[0] if len(eval_modes) == 1 else 'mixed'
# add to global results
raw_results[model_abbr][sg['name']] = results
parsed_results[model_abbr][sg['name']] = [numerator / denominator]
dataset_metrics[sg['name']] = [metric]
dataset_eval_mode[sg['name']] = eval_mode
elif len(results) == 0:
continue
else:
raw_results[model_abbr][sg['name']] = {'error': 'missing datasets: {}'.format(set(sg['subsets']) - set(results.keys()))}
prompt_version = {dataset_abbr_from_cfg(d): get_prompt_hash(d)[:6] for d in dataset_cfgs}
# format table
summarizer_dataset_abbrs = []
if summarizer_cfg.get('dataset_abbrs') is None:
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
if dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
summarizer_dataset_abbrs.append((dataset_abbr, None))
for dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
if (dataset_abbr, metric) not in summarizer_dataset_abbrs:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
for item in summarizer_cfg['dataset_abbrs']:
if isinstance(item, str):
summarizer_dataset_abbrs.append((item, None))
elif isinstance(item, (list, tuple)):
summarizer_dataset_abbrs.append((item[0], item[1]))
table = []
checkpoints = [model_abbr.rsplit('_', 1)[1] if '_' in model_abbr else model_abbr for model_abbr in model_abbrs]
# model_abbrs = [model_abbr.rsplit("_", 1)[0] for model_abbr in model_abbrs]
header = ['dataset', 'version', 'metric', 'mode'] + model_abbrs
time_zone = pytz.timezone('Asia/Shanghai')
now = datetime.now(time_zone)
time = now.strftime('%m/%d %H:%M')
times = [time] * len(model_abbrs)
table.append(header)
table.append(['time', 'version', 'metric', 'mode'] + times)
table.append(['checkpoint', 'version', 'metric', 'mode']+ checkpoints)
# check long bench
max_seq_lens = [str(model_cfg.max_seq_len) for model_cfg in model_cfgs]
table.append(['max_seq_len', 'version', 'metric', 'mode']+ max_seq_lens)
dataset_score = [0]* len(model_abbrs)
dataset_num = [0] * len(model_abbrs)
for dataset_abbr, metric in summarizer_dataset_abbrs:
# if dataset_abbr not in dataset_metrics:
# table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(model_abbrs))
# continue
if metric is None and dataset_abbr in dataset_metrics:
index = 0
metric = dataset_metrics[dataset_abbr][0]
elif dataset_abbr in dataset_metrics and metric in dataset_metrics[dataset_abbr]:
index = dataset_metrics[dataset_abbr].index(metric)
elif not dataset_abbr.startswith('---'):
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(model_abbrs))
continue
if dataset_abbr.startswith('---'):
row = [dataset_abbr,'-','-','-']
else:
row = [dataset_abbr, prompt_version.get(dataset_abbr, '-'), metric, dataset_eval_mode.get(dataset_abbr, '-')]
for i, model_abbr in enumerate(model_abbrs):
if dataset_abbr in parsed_results[model_abbr]:
row.append('{:.02f}'.format(parsed_results[model_abbr][dataset_abbr][index]))
dataset_score[i] += parsed_results[model_abbr][dataset_abbr][index]
dataset_num[i] += 1
else:
if dataset_abbr.startswith('---') and dataset_num[i] != 0:
row.append('{:.02f}'.format(dataset_score[i] / dataset_num[i]))
dataset_score[i] = 0
dataset_num[i] = 0
else:
row.append('-')
table.append(row)
# format raw txt
raw_dataset_abbrs = []
for model_abbr in model_abbrs:
for dataset_abbr in raw_results[model_abbr]:
if dataset_abbr not in raw_dataset_abbrs:
raw_dataset_abbrs.append(dataset_abbr)
raw_txts = []
for model_abbr in model_abbrs:
raw_txts.append('-------------------------------')
raw_txts.append(f'Model: {model_abbr}')
for dataset_abbr in raw_dataset_abbrs:
result = raw_results[model_abbr].get(dataset_abbr, '{}')
raw_txts.append(f'{dataset_abbr}: {result}')
raw_txts = '\n'.join(raw_txts)
# output to screean
print(tabulate.tabulate(table, headers='firstrow'))
# output to file
if output_path is None:
output_path = osp.join(work_dir, 'summary', f'summary_{time_str}.txt')
output_csv_path = osp.join(work_dir, 'summary', f'summary_{time_str}.csv')
else:
output_csv_path = output_path.replace('.txt', '.csv')
output_dir = osp.split(output_path)[0]
mmengine.mkdir_or_exist(output_dir)
with open(output_path, 'w', encoding='utf-8') as f:
f.write(time_str + '\n')
f.write('tabulate format\n')
f.write('^' * 128 + '\n')
f.write(tabulate.tabulate(table, headers='firstrow') + '\n')
f.write('$' * 128 + '\n')
f.write('\n' + '-' * 128 + ' THIS IS A DIVIDER ' + '-' * 128 + '\n\n')
f.write('csv format\n')
f.write('^' * 128 + '\n')
f.write('\n'.join([','.join(row) for row in table]) + '\n')
f.write('$' * 128 + '\n')
f.write('\n' + '-' * 128 + ' THIS IS A DIVIDER ' + '-' * 128 + '\n\n')
f.write('raw format\n')
f.write('^' * 128 + '\n')
f.write(raw_txts + '\n')
f.write('$' * 128 + '\n')
self.logger.info(f'write summary to {osp.abspath(output_path)}')
if self.lark_reporter:
content = f'{getpass.getuser()} 的'
content += f'详细评测汇总已输出至 {osp.abspath(output_path)}'
self.lark_reporter.post(content)
with open(output_csv_path, 'w', encoding='utf-8') as f:
f.write('\n'.join([','.join(row) for row in table]) + '\n')
self.logger.info(f'write csv to {osp.abspath(output_csv_path)}')
summary_groups = summarizer_cfg.get('summary_groups', [])
for sg in summary_groups:
for model_abbr in model_abbrs:
results = {}
eval_modes = []
for dataset_abbr in sg['subsets']:
if dataset_abbr in parsed_results[model_abbr]:
results[dataset_abbr] = (parsed_results[model_abbr][dataset_abbr][-1],parsed_results[model_abbr][dataset_abbr][-2])
eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
if len(results) == len(sg['subsets']):
numerator1 = sum(results[k][0] for k in results)
numerator2 = sum(results[k][1] for k in results)
denominator = len(results)
metric = 'correct_bpb-incorrect_bpb'
count_ppl = eval_modes.count('ppl')
count_gen = len(eval_modes)-count_ppl
if count_ppl==0:
results[metric] = -1
else:
results[metric] = (numerator1+count_gen) / count_ppl
eval_modes = list(set(eval_modes))
eval_mode = eval_modes[0] if len(eval_modes) == 1 else 'mixed'
# add to global results
raw_results[model_abbr][sg['name']] = results
parsed_results[model_abbr][sg['name']] = [((numerator1+count_gen) / count_ppl) if count_ppl != 0 else -1, ((numerator2+count_gen) / count_ppl) if count_ppl != 0 else -1]
dataset_metrics[sg['name']] = ['incorrect_bpb','correct_bpb']
dataset_eval_mode[sg['name']] = eval_mode
elif len(results) == 0:
continue
else:
raw_results[model_abbr][sg['name']] = {'error': 'missing datasets: {}'.format(set(sg['subsets']) - set(results.keys()))}
table = []
table.append(['', '', '', ''] + [''] * len(model_abbrs))
table.append(['', '', '', ''] + [''] * len(model_abbrs))
table.append(['', '', '', ''] + [''] * len(model_abbrs))
for dataset_abbr, metric in summarizer_dataset_abbrs:
incorrect_bpb = -1
correct_bpb = -1
if dataset_abbr not in dataset_metrics:
table.append([dataset_abbr, '', '', ''] + [''] * len(model_abbrs))
continue
if metric is None:
index = 0
try:
incorrect_bpb = dataset_metrics[dataset_abbr].index('incorrect_bpb')
correct_bpb = dataset_metrics[dataset_abbr].index('correct_bpb')
except ValueError:
try:
incorrect_bpb = dataset_metrics[dataset_abbr].index('wrong_bpb')
correct_bpb = dataset_metrics[dataset_abbr].index('right_bpb')
except ValueError:
incorrect_bpb = -1
correct_bpb = -1
metric = 'correct_bpb-incorrect_bpb'
elif metric in dataset_metrics[dataset_abbr]:
index = dataset_metrics[dataset_abbr].index(metric)
else:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(model_abbrs))
continue
row = [dataset_abbr, prompt_version.get(dataset_abbr, '-'), metric,
dataset_eval_mode.get(dataset_abbr, '-')]
for model_abbr in model_abbrs:
if dataset_abbr in parsed_results[model_abbr]:
if incorrect_bpb != -1 and correct_bpb != -1:
row.append('{:.02f}/{:.02f}'.format(parsed_results[model_abbr][dataset_abbr][correct_bpb],
parsed_results[model_abbr][dataset_abbr][incorrect_bpb]))
else:
row.append('{:.02f}'.format(-1))
else:
row.append('-')
table.append(row)
with open(output_csv_path, 'a', encoding='utf-8') as f:
f.write('\n'.join([','.join(row) for row in table]) + '\n')