File size: 4,447 Bytes
8e595a3 dfb776c 956faec f20266d 35cd376 88679c6 35cd376 88679c6 35cd376 b9fa8ea 35cd376 88679c6 b9fa8ea 88679c6 35cd376 88679c6 35cd376 88679c6 35cd376 88679c6 35cd376 956faec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license: cc-by-nc-4.0
model-index:
- name: cr-model
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 57.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.66
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.73
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 58.2
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.88
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
name: Open LLM Leaderboard
---
My model is a state-of-the-art language processing AI designed to understand and generate human-like text. It leverages deep learning algorithms to engage in a wide range of language tasks, providing users with information, recommendations, and even casual conversation. With a broad knowledge base and nuanced understanding of context, my capabilities enable me to assist with various inquiries and perform complex language-based tasks effectively.
How to use?
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
model = AutoModelForCausalLM.from_pretrained(
'TwT-6/cr-model',
attn_implementation="flash_attention_2",
trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto").eval()
tokenizer = AutoTokenizer.from_pretrained('TwT-6/cr-model', trust_remote_code=True)
inputs = '你好'
inputs = f'<|omni_start|>### User:\n{inputs}\n\n### Assistant:\n'
inputs = tokenizer(inputs, return_tensors="pt").to('cuda')
output_ids = model.generate(**inputs)[0].cpu()
output = tokenizer.decode(output_ids[inputs.input_ids.shape[-1]:])
print(output)
## 你好!很高兴见到你。有什么我可以帮助你的吗
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TwT-6__cr-model)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.09|
|AI2 Reasoning Challenge (25-Shot)|57.85|
|HellaSwag (10-Shot) |81.66|
|MMLU (5-Shot) |68.73|
|TruthfulQA (0-shot) |58.20|
|Winogrande (5-shot) |76.24|
|GSM8k (5-shot) |65.88|
|