My model is a state-of-the-art language processing AI designed to understand and generate human-like text. It leverages deep learning algorithms to engage in a wide range of language tasks, providing users with information, recommendations, and even casual conversation. With a broad knowledge base and nuanced understanding of context, my capabilities enable me to assist with various inquiries and perform complex language-based tasks effectively.
How to use?
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
model = AutoModelForCausalLM.from_pretrained( 'TwT-6/cr-model', attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto").eval()
tokenizer = AutoTokenizer.from_pretrained('TwT-6/cr-model', trust_remote_code=True)
inputs = '你好'
inputs = f'<|omni_start|>### User:\n{inputs}\n\n### Assistant:\n'
inputs = tokenizer(inputs, return_tensors="pt").to('cuda')
output_ids = model.generate(**inputs)[0].cpu()
output = tokenizer.decode(output_ids[inputs.input_ids.shape[-1]:])
print(output)
你好!很高兴见到你。有什么我可以帮助你的吗
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.09 |
AI2 Reasoning Challenge (25-Shot) | 57.85 |
HellaSwag (10-Shot) | 81.66 |
MMLU (5-Shot) | 68.73 |
TruthfulQA (0-shot) | 58.20 |
Winogrande (5-shot) | 76.24 |
GSM8k (5-shot) | 65.88 |
- Downloads last month
- 65
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard57.850
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.660
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard68.730
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard58.200
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard76.240
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard65.880