Edit model card

My model is a state-of-the-art language processing AI designed to understand and generate human-like text. It leverages deep learning algorithms to engage in a wide range of language tasks, providing users with information, recommendations, and even casual conversation. With a broad knowledge base and nuanced understanding of context, my capabilities enable me to assist with various inquiries and perform complex language-based tasks effectively.

How to use?

from transformers import AutoModelForCausalLM, AutoTokenizer

from transformers.generation import GenerationConfig

import torch

model = AutoModelForCausalLM.from_pretrained( 'TwT-6/cr-model', attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto").eval()

tokenizer = AutoTokenizer.from_pretrained('TwT-6/cr-model', trust_remote_code=True)

inputs = '你好'

inputs = f'<|omni_start|>### User:\n{inputs}\n\n### Assistant:\n'

inputs = tokenizer(inputs, return_tensors="pt").to('cuda')

output_ids = model.generate(**inputs)[0].cpu()

output = tokenizer.decode(output_ids[inputs.input_ids.shape[-1]:])

print(output)

你好!很高兴见到你。有什么我可以帮助你的吗

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.09
AI2 Reasoning Challenge (25-Shot) 57.85
HellaSwag (10-Shot) 81.66
MMLU (5-Shot) 68.73
TruthfulQA (0-shot) 58.20
Winogrande (5-shot) 76.24
GSM8k (5-shot) 65.88
Downloads last month
65
Safetensors
Model size
14.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results