File size: 4,447 Bytes
8e595a3
dfb776c
a7cefa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20266d
 
35cd376
 
 
 
 
88679c6
35cd376
88679c6
35cd376
 
 
 
b9fa8ea
35cd376
 
88679c6
b9fa8ea
88679c6
35cd376
88679c6
35cd376
88679c6
35cd376
 
 
88679c6
35cd376
 
 
 
 
a7cefa7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: cc-by-nc-4.0
model-index:
- name: cr-model
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 57.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 81.66
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 68.73
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 58.2
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.24
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.88
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
      name: Open LLM Leaderboard
---

My model is a state-of-the-art language processing AI designed to understand and generate human-like text. It leverages deep learning algorithms to engage in a wide range of language tasks, providing users with information, recommendations, and even casual conversation. With a broad knowledge base and nuanced understanding of context, my capabilities enable me to assist with various inquiries and perform complex language-based tasks effectively.

How to use?

from transformers import AutoModelForCausalLM, AutoTokenizer

from transformers.generation import GenerationConfig

import torch


model = AutoModelForCausalLM.from_pretrained(
    'TwT-6/cr-model', 
    attn_implementation="flash_attention_2", 
    trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto").eval()
    
tokenizer = AutoTokenizer.from_pretrained('TwT-6/cr-model', trust_remote_code=True)

inputs = '你好'

inputs = f'<|omni_start|>### User:\n{inputs}\n\n### Assistant:\n'

inputs = tokenizer(inputs, return_tensors="pt").to('cuda')

output_ids = model.generate(**inputs)[0].cpu()

output = tokenizer.decode(output_ids[inputs.input_ids.shape[-1]:])

print(output)

## 你好!很高兴见到你。有什么我可以帮助你的吗

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TwT-6__cr-model)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |68.09|
|AI2 Reasoning Challenge (25-Shot)|57.85|
|HellaSwag (10-Shot)              |81.66|
|MMLU (5-Shot)                    |68.73|
|TruthfulQA (0-shot)              |58.20|
|Winogrande (5-shot)              |76.24|
|GSM8k (5-shot)                   |65.88|