inference: false | |
tags: | |
- onnx | |
- adapterhub:qa/narrativeqa | |
- adapter-transformers | |
- bart | |
datasets: | |
- narrativeqa | |
# ONNX export of Adapter `hSterz/narrativeqa` for facebook/bart-base | |
## Conversion of [AdapterHub/narrativeqa](https://huggingface.co/AdapterHub/narrativeqa) for UKP SQuARE | |
## Usage | |
```python | |
onnx_path = hf_hub_download(repo_id='UKP-SQuARE/narrativeqa-onnx', filename='model.onnx') # or model_quant.onnx for quantization | |
onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider']) | |
context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.' | |
question = 'What are advantages of ONNX?' | |
tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/narrativeqa-onnx') | |
inputs = tokenizer(question, context, padding=True, truncation=True, return_tensors='np') | |
outputs = onnx_model.run(input_feed=dict(inputs), output_names=None) | |
``` | |
## Architecture & Training | |
<!-- Add some description here --> | |
## Evaluation results | |
<!-- Add some description here --> | |
## Citation | |
<!-- Add some description here --> |