Adding Evaluation Results
#1
by
leaderboard-pr-bot
- opened
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
language:
|
4 |
- de
|
5 |
- en
|
@@ -9,15 +8,111 @@ language:
|
|
9 |
- nl
|
10 |
- ar
|
11 |
- es
|
|
|
12 |
tags:
|
13 |
- spectrum
|
14 |
- sft
|
15 |
- dpo
|
|
|
|
|
16 |
datasets:
|
17 |
- VAGOsolutions/SauerkrautLM-Fermented-GER-DPO
|
18 |
- VAGOsolutions/SauerkrautLM-Fermented-Irrelevance-GER-DPO
|
19 |
-
|
20 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
|
@@ -137,4 +232,17 @@ If you are interested in customized LLMs for business applications, please get i
|
|
137 |
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
|
138 |
|
139 |
## Acknowledgement
|
140 |
-
Many thanks to [Qwen](https://huggingface.co/Qwen) for providing such a valuable base model, and to our community for their continued support and engagement.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- de
|
4 |
- en
|
|
|
8 |
- nl
|
9 |
- ar
|
10 |
- es
|
11 |
+
license: apache-2.0
|
12 |
tags:
|
13 |
- spectrum
|
14 |
- sft
|
15 |
- dpo
|
16 |
+
base_model:
|
17 |
+
- VAGOsolutions/SauerkrautLM-v2-14b-SFT
|
18 |
datasets:
|
19 |
- VAGOsolutions/SauerkrautLM-Fermented-GER-DPO
|
20 |
- VAGOsolutions/SauerkrautLM-Fermented-Irrelevance-GER-DPO
|
21 |
+
model-index:
|
22 |
+
- name: SauerkrautLM-v2-14b-DPO
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-generation
|
26 |
+
name: Text Generation
|
27 |
+
dataset:
|
28 |
+
name: IFEval (0-Shot)
|
29 |
+
type: HuggingFaceH4/ifeval
|
30 |
+
args:
|
31 |
+
num_few_shot: 0
|
32 |
+
metrics:
|
33 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
34 |
+
value: 74.12
|
35 |
+
name: strict accuracy
|
36 |
+
source:
|
37 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-DPO
|
38 |
+
name: Open LLM Leaderboard
|
39 |
+
- task:
|
40 |
+
type: text-generation
|
41 |
+
name: Text Generation
|
42 |
+
dataset:
|
43 |
+
name: BBH (3-Shot)
|
44 |
+
type: BBH
|
45 |
+
args:
|
46 |
+
num_few_shot: 3
|
47 |
+
metrics:
|
48 |
+
- type: acc_norm
|
49 |
+
value: 50.93
|
50 |
+
name: normalized accuracy
|
51 |
+
source:
|
52 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-DPO
|
53 |
+
name: Open LLM Leaderboard
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
name: Text Generation
|
57 |
+
dataset:
|
58 |
+
name: MATH Lvl 5 (4-Shot)
|
59 |
+
type: hendrycks/competition_math
|
60 |
+
args:
|
61 |
+
num_few_shot: 4
|
62 |
+
metrics:
|
63 |
+
- type: exact_match
|
64 |
+
value: 27.34
|
65 |
+
name: exact match
|
66 |
+
source:
|
67 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-DPO
|
68 |
+
name: Open LLM Leaderboard
|
69 |
+
- task:
|
70 |
+
type: text-generation
|
71 |
+
name: Text Generation
|
72 |
+
dataset:
|
73 |
+
name: GPQA (0-shot)
|
74 |
+
type: Idavidrein/gpqa
|
75 |
+
args:
|
76 |
+
num_few_shot: 0
|
77 |
+
metrics:
|
78 |
+
- type: acc_norm
|
79 |
+
value: 9.28
|
80 |
+
name: acc_norm
|
81 |
+
source:
|
82 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-DPO
|
83 |
+
name: Open LLM Leaderboard
|
84 |
+
- task:
|
85 |
+
type: text-generation
|
86 |
+
name: Text Generation
|
87 |
+
dataset:
|
88 |
+
name: MuSR (0-shot)
|
89 |
+
type: TAUR-Lab/MuSR
|
90 |
+
args:
|
91 |
+
num_few_shot: 0
|
92 |
+
metrics:
|
93 |
+
- type: acc_norm
|
94 |
+
value: 13.78
|
95 |
+
name: acc_norm
|
96 |
+
source:
|
97 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-DPO
|
98 |
+
name: Open LLM Leaderboard
|
99 |
+
- task:
|
100 |
+
type: text-generation
|
101 |
+
name: Text Generation
|
102 |
+
dataset:
|
103 |
+
name: MMLU-PRO (5-shot)
|
104 |
+
type: TIGER-Lab/MMLU-Pro
|
105 |
+
config: main
|
106 |
+
split: test
|
107 |
+
args:
|
108 |
+
num_few_shot: 5
|
109 |
+
metrics:
|
110 |
+
- type: acc
|
111 |
+
value: 45.75
|
112 |
+
name: accuracy
|
113 |
+
source:
|
114 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-DPO
|
115 |
+
name: Open LLM Leaderboard
|
116 |
---
|
117 |
|
118 |
|
|
|
232 |
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
|
233 |
|
234 |
## Acknowledgement
|
235 |
+
Many thanks to [Qwen](https://huggingface.co/Qwen) for providing such a valuable base model, and to our community for their continued support and engagement.
|
236 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
237 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VAGOsolutions__SauerkrautLM-v2-14b-DPO)
|
238 |
+
|
239 |
+
| Metric |Value|
|
240 |
+
|-------------------|----:|
|
241 |
+
|Avg. |36.87|
|
242 |
+
|IFEval (0-Shot) |74.12|
|
243 |
+
|BBH (3-Shot) |50.93|
|
244 |
+
|MATH Lvl 5 (4-Shot)|27.34|
|
245 |
+
|GPQA (0-shot) | 9.28|
|
246 |
+
|MuSR (0-shot) |13.78|
|
247 |
+
|MMLU-PRO (5-shot) |45.75|
|
248 |
+
|