ValentinaKim's picture
Add new SentenceTransformer model.
aaf5adb verified
---
base_model: intfloat/multilingual-e5-small
language:
- multilingual
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:94
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 서울여자대학교 수시모집 지원자에게 필요한 최초합격자 발표 정보는 다음과 같습니다. 최초합격자 발표는 2024 11
8일부터 12 13일까지입니다. 합격자는 본교 입학처 홈페이지에서 합격 여부를 확인하여야 하며, 등록기간 내에 등록을 마쳐야 합니다.
sentences:
- SWU의 SI(Social Innovation)교육에 대해 알려줘.
- 학교생활기록부 교과성적 반영방법을 설명해 주세요.
- 서울여자대학교 수시모집 지원자에게 필요한 최초합격자 발표 정보를 알려줘.
- source_sentence: 고등학교 졸업(예정)자의 경우 학교생활기록부 제출 방법은 다음과 같습니다. 원본 대조필 학교장 직인 날인
제출하여야 합니다. 외국 고등학교 졸업(예정)자의 경우는 한국어나 영어로 번역 공증받은 문서를 제출하여야 합니다.
sentences:
- 언론영상학부-저널리즘전공의 졸업 진로는 무엇입니까?
- 서울여자대학교에 있는 박물관학전공의 교육 내용을 설명해줘.
- 고등학교 졸업(예정)자의 경우 학교생활기록부 제출 방법을 설명해줘.
- source_sentence: 심리·인지과학학부-인지학습과학전공의 졸업 진로는 교육프로그램 개발자, 교육기업 데이터 분석 업무, 인지학습 치료사,
인지행동 치료사, 교육컨설턴트, 국가연구소, 이러닝 관련 산업분야 등입니다.
sentences:
- 서울여자대학교에 있는 예술심리치료전공의 목표를 설명해줘.
- 서울여자대학교 수시모집 지원자에게 필요한 교과성적 산출 방법을 설명해줘.
- 심리·인지과학학부-인지학습과학전공의 졸업 진로를 설명하세요.
- source_sentence: 2024학년도 서울여자대학교 수시모집 지원자에게 필요한 정보는 다음과 같습니다. 수시모집 지원기간은 2024 9
10일부터 9 13일까지입니다. 지원자는 인터넷 입학원서접수 사이트에 접속하여 원서접수를 완료해야 하며, 전형료 결제는 신용카드, 계좌이체
등으로 가능합니다. 또한, 지원자는 제출서류를 등기우편으로 제출하여야 하며, 서류제출 마감일은 2024 9 13일입니다.
sentences:
- 박물관학전공의 교육 목표는 무엇입니까?
- 2024학년도 서울여자대학교 수시모집 지원자에게 필요한 정보를 알려줘.
- 학생부종합 전형으로 지원할 있는 전형의 유형을 모두 알려줘
- source_sentence: 학교생활기록부 교과성적 대체 점수(비교내신) 대상자는 논술(논술우수자전형), 실기/실적(실기우수자전형_체육) 지원자
고등학교 졸업학력 검정고시 출신 지원자 교과성적 산출 불가자입니다.
sentences:
- 고등학교 학교생활기록부 제출 방법을 설명하세요.
- 청소년학전공의 교육 내용은 무엇입니까?
- 학교생활기록부 교과성적 대체 점수(비교내신) 대상자를 알려줘.
model-index:
- name: Multilingual base SWU Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6363636363636364
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9090909090909091
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6363636363636364
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30303030303030304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6363636363636364
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9090909090909091
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8475878017079786
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7954545454545454
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7954545454545454
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6363636363636364
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9090909090909091
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6363636363636364
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30303030303030304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6363636363636364
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9090909090909091
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8475878017079786
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7954545454545454
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7954545454545454
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6363636363636364
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9090909090909091
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6363636363636364
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30303030303030304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6363636363636364
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9090909090909091
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8356850968378461
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7803030303030302
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7803030303030302
name: Cosine Map@100
---
# Multilingual base SWU Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** multilingual
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-SWU-Matryoshka")
# Run inference
sentences = [
'학교생활기록부 교과성적 대체 점수(비교내신) 대상자는 논술(논술우수자전형), 실기/실적(실기우수자전형_체육) 지원자 중 고등학교 졸업학력 검정고시 출신 지원자 및 교과성적 산출 불가자입니다.',
'학교생활기록부 교과성적 대체 점수(비교내신) 대상자를 알려줘.',
'청소년학전공의 교육 내용은 무엇입니까?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6364 |
| cosine_accuracy@3 | 0.9091 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6364 |
| cosine_precision@3 | 0.303 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6364 |
| cosine_recall@3 | 0.9091 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.8476 |
| cosine_mrr@10 | 0.7955 |
| **cosine_map@100** | **0.7955** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6364 |
| cosine_accuracy@3 | 0.9091 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6364 |
| cosine_precision@3 | 0.303 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6364 |
| cosine_recall@3 | 0.9091 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.8476 |
| cosine_mrr@10 | 0.7955 |
| **cosine_map@100** | **0.7955** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6364 |
| cosine_accuracy@3 | 0.9091 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6364 |
| cosine_precision@3 | 0.303 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6364 |
| cosine_recall@3 | 0.9091 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.8357 |
| cosine_mrr@10 | 0.7803 |
| **cosine_map@100** | **0.7803** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 94 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 94 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 24 tokens</li><li>mean: 89.93 tokens</li><li>max: 272 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 19.18 tokens</li><li>max: 35 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
| <code>서울여자대학교 수시모집에서 평가하는 요소는 다음과 같습니다. 1. 서류 평가(학업역량 40%, 진로역량 35%, 공동체역량 25%) 2. 면접 평가(인성 및 의사소통능력, 발전가능성) 3. 학교생활기록부에 학교폭력 관련 기재사항이 있을 경우, 정성평가로 반영합니다.</code> | <code>서울여자대학교 수시모집에서 평가하는 요소를 알려줘.</code> |
| <code>서울여자대학교 학생부종합전형 지원자에게 필요한 지원자격 정보는 다음과 같습니다. 지원자격은 기초생활수급자, 차상위계층, 한부모가족 지원대상자, 국가보훈대상자, 자립지원 대상 아동, 농어촌학생 등입니다. 각 지원자격에 따라 필요한 제출서류가 다르므로, 지원자격에 따라 필요한 제출서류를 확인하여야 합니다.</code> | <code>서울여자대학교 학생부종합전형 지원자에게 필요한 지원자격 정보를 알려줘.</code> |
| <code>SWU의 SI(Social Innovation)교육은 사회적 가치 확산을 위해 혁신적인 방법론을 적용하여 긍정적인 사회 변화를 유도하는 서울여자대학교만의 차별화된 교육입니다. 바롬종합설계프로젝트는 유네스코한국위원회가 인증한 유네스코지속가능발전교육공식프로젝트입니다.</code> | <code>SWU의 SI(Social Innovation)교육에 대해 알려줘.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
|:-------:|:-----:|:----------------------:|:----------------------:|:---------------------:|
| **1.0** | **1** | **0.7955** | **0.7955** | **0.7803** |
| 2.0 | 2 | 0.7955 | 0.7955 | 0.7803 |
| 3.0 | 4 | 0.7955 | 0.7955 | 0.7803 |
| **1.0** | **1** | **0.7955** | **0.7955** | **0.7803** |
| 2.0 | 2 | 0.7955 | 0.7955 | 0.7803 |
| 3.0 | 4 | 0.7955 | 0.7955 | 0.7803 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->