whisper-small-mr / README.md
VijayChoudhari's picture
End of training
ea396b3 verified
metadata
library_name: transformers
language:
  - mr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Small Mr - Vijay Choudhari
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: mr
          split: test
          args: mr
        metrics:
          - name: Wer
            type: wer
            value: 17.88781198212223

Whisper Small Mr - Vijay Choudhari

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3561
  • Wer Ortho: 44.5425
  • Wer: 17.8878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0708 1.9920 500 0.2916 44.8185 17.8828
0.0203 3.9841 1000 0.3561 44.5425 17.8878

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1