Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,123 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
|
|
|
|
|
|
3 |
tags: []
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
model_name: Vikhr-Gemma-2B-instruct
|
4 |
+
base_model:
|
5 |
+
- google/gemma-2-2b-it
|
6 |
tags: []
|
7 |
+
language:
|
8 |
+
- ru
|
9 |
+
license: apache-2.0
|
10 |
---
|
11 |
|
12 |
+
# 🌪️ Vikhr-Gemma-2B-instruct
|
13 |
+
|
14 |
+
#### RU
|
15 |
+
|
16 |
+
Мощная инструктивная модель на основе Gemma 2 2B, обученная на русскоязычном датасете GrandMaster-PRO-MAX.
|
17 |
+
|
18 |
+
#### EN
|
19 |
+
|
20 |
+
A powerful instructive model based on Gemma 2 2B, trained on the Russian-language dataset GrandMaster-PRO-MAX.
|
21 |
+
|
22 |
+
## Особенности:
|
23 |
+
|
24 |
+
- 📚 Основа / Base: [gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)
|
25 |
+
- 🇷🇺 Специализация / Specialization: **RU**
|
26 |
+
- 💾 Датасет / Dataset: [GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX)
|
27 |
+
|
28 |
+
## Попробовать / Try now:
|
29 |
+
|
30 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1htw3x1OS73vIJrMYvdQfflGg4ASdGg9P)
|
31 |
+
|
32 |
+
## Описание:
|
33 |
+
|
34 |
+
#### RU
|
35 |
+
|
36 |
+
Vikhr-Gemma-2B-instruct — это мощная и компактная языковая модель, обученная на датасете GrandMaster-PRO-MAX, специально разработанная для обработки русского языка. Эта модель способна решать широкий спектр задач, включая генерацию текста, ответы на вопросы, создание диалогов и выполнение инструкций на русском языке.
|
37 |
+
|
38 |
+
#### EN
|
39 |
+
|
40 |
+
Vikhr-Gemma-2B-instruct is a powerful and compact language model trained on the GrandMaster-PRO-MAX dataset, specifically designed for processing the Russian language. This model is capable of solving a wide range of tasks, including text generation, question answering, dialogue creation, and executing instructions in Russian.
|
41 |
+
|
42 |
+
## Пример кода для запуска / Sample code to run:
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
46 |
+
|
47 |
+
# Загрузка модели и токенизатора
|
48 |
+
model_name = "Vikhrmodels/Vikhr-Gemma-2B-instruct"
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
|
52 |
+
# Подготовка входного текста
|
53 |
+
input_text = "Напиши стихотворение о весне в России."
|
54 |
+
|
55 |
+
# Токенизация и генерация текста
|
56 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
57 |
+
output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)
|
58 |
+
|
59 |
+
# Декодирование и вывод результата
|
60 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
+
print(generated_text)
|
62 |
+
```
|
63 |
+
|
64 |
+
#### Ответ модели / Model response:
|
65 |
+
|
66 |
+
> Весна в России – это время обновления природы, когда природа пробуждается >от зимнего сна. Вот стихотворение, отражающее эту красоту:
|
67 |
+
>
|
68 |
+
> ---
|
69 |
+
>
|
70 |
+
> **Весна в России**
|
71 |
+
>
|
72 |
+
> Зимняя тишина утихла,
|
73 |
+
> Весна в России пришла.
|
74 |
+
> Солнце светит, словно в сказке,
|
75 |
+
> В небесах – птицы в полете.
|
76 |
+
>
|
77 |
+
> Снег пошел, ушел вдаль,
|
78 |
+
> И в каждом уголке – весна.
|
79 |
+
> Лед промерз, вода в реке –
|
80 |
+
> Ветры вьют, и листья поют.
|
81 |
+
>
|
82 |
+
> Цветы распустились, как будто
|
83 |
+
> В честь весны, в честь жизни.
|
84 |
+
> Зеленая трава, как полотно,
|
85 |
+
> Под ногами – мягкость.
|
86 |
+
>
|
87 |
+
> Весна в России – это чудо,
|
88 |
+
> Счастье, что в сердце живет.
|
89 |
+
> И каждый день – праздник,
|
90 |
+
> Когда природа в цвету.
|
91 |
+
>
|
92 |
+
> ---
|
93 |
+
>
|
94 |
+
> Надеюсь, это стихотворение передало дух и красоту весны в России.
|
95 |
+
|
96 |
+
## Метрики на ru_arena_general / Metrics on ru_arena_general
|
97 |
+
|
98 |
+
| Model | Score | 95% CI | Avg Tokens | Std Tokens | LC Score |
|
99 |
+
| ---------------------------------------------- | --------- | --------------- | ---------- | ---------- | --------- |
|
100 |
+
| suzume-llama-3-8B-multilingual-orpo-borda-half | 90.89 | +1.1 / -1.1 | 2495.38 | 1211.62 | 55.86 |
|
101 |
+
| mistral-nemo-instruct-2407 | 50.53 | +2.5 / -2.2 | 403.17 | 321.53 | 50.08 |
|
102 |
+
| sfr-iterative-dpo-llama-3-8b-r | 50.06 | +2.1 / -2.1 | 516.74 | 316.84 | 50.01 |
|
103 |
+
| gpt-3.5-turbo-0125 | 50.00 | +0.0 / -0.0 | 220.83 | 170.30 | 50.00 |
|
104 |
+
| glm-4-9b-chat | 49.75 | +1.9 / -2.3 | 568.81 | 448.76 | 49.96 |
|
105 |
+
| c4ai-command-r-v01 | 48.95 | +2.6 / -1.7 | 529.34 | 368.98 | 49.85 |
|
106 |
+
| llama-3-instruct-8b-sppo-iter3 | 47.45 | +2.0 / -2.2 | 502.27 | 304.27 | 49.63 |
|
107 |
+
| **Vikhrmodels-vikhr-gemma-2b-it** | **45.82** | **+2.4 / -2.0** | **722.83** | **710.71** | **49.40** |
|
108 |
+
| suzume-llama-3-8b-multilingual | 45.71 | +2.4 / -1.7 | 641.18 | 858.96 | 49.38 |
|
109 |
+
| yandex_gpt_pro | 45.11 | +2.2 / -2.5 | 345.30 | 277.64 | 49.30 |
|
110 |
+
| hermes-2-theta-llama-3-8b | 44.07 | +2.0 / -2.2 | 485.99 | 390.85 | 49.15 |
|
111 |
+
| gpt-3.5-turbo-1106 | 41.48 | +1.9 / -2.0 | 191.19 | 177.31 | 48.77 |
|
112 |
+
| llama-3-smaug-8b | 40.80 | +2.1 / -1.6 | 524.02 | 480.56 | 48.68 |
|
113 |
+
| llama-3-8b-saiga-suzume-ties | 39.94 | +2.0 / -1.7 | 763.27 | 699.39 | 48.55 |
|
114 |
+
|
115 |
+
```
|
116 |
+
@article{nikolich2024vikhr,
|
117 |
+
title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian},
|
118 |
+
author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov},
|
119 |
+
journal={arXiv preprint arXiv:2405.13929},
|
120 |
+
year={2024},
|
121 |
+
url={https://arxiv.org/pdf/2405.13929}
|
122 |
+
}
|
123 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|