LakoMoor commited on
Commit
b9f514a
1 Parent(s): f5588c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -194
README.md CHANGED
@@ -1,199 +1,123 @@
1
  ---
2
  library_name: transformers
 
 
 
3
  tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ model_name: Vikhr-Gemma-2B-instruct
4
+ base_model:
5
+ - google/gemma-2-2b-it
6
  tags: []
7
+ language:
8
+ - ru
9
+ license: apache-2.0
10
  ---
11
 
12
+ # 🌪️ Vikhr-Gemma-2B-instruct
13
+
14
+ #### RU
15
+
16
+ Мощная инструктивная модель на основе Gemma 2 2B, обученная на русскоязычном датасете GrandMaster-PRO-MAX.
17
+
18
+ #### EN
19
+
20
+ A powerful instructive model based on Gemma 2 2B, trained on the Russian-language dataset GrandMaster-PRO-MAX.
21
+
22
+ ## Особенности:
23
+
24
+ - 📚 Основа / Base: [gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)
25
+ - 🇷🇺 Специализация / Specialization: **RU**
26
+ - 💾 Датасет / Dataset: [GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX)
27
+
28
+ ## Попробовать / Try now:
29
+
30
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1htw3x1OS73vIJrMYvdQfflGg4ASdGg9P)
31
+
32
+ ## Описание:
33
+
34
+ #### RU
35
+
36
+ Vikhr-Gemma-2B-instruct это мощная и компактная языковая модель, обученная на датасете GrandMaster-PRO-MAX, специально разработанная для обработки русского языка. Эта модель способна решать широкий спектр задач, включая генерацию текста, ответы на вопросы, создание диалогов и выполнение инструкций на русском языке.
37
+
38
+ #### EN
39
+
40
+ Vikhr-Gemma-2B-instruct is a powerful and compact language model trained on the GrandMaster-PRO-MAX dataset, specifically designed for processing the Russian language. This model is capable of solving a wide range of tasks, including text generation, question answering, dialogue creation, and executing instructions in Russian.
41
+
42
+ ## Пример кода для запуска / Sample code to run:
43
+
44
+ ```python
45
+ from transformers import AutoModelForCausalLM, AutoTokenizer
46
+
47
+ # Загрузка модели и токенизатора
48
+ model_name = "Vikhrmodels/Vikhr-Gemma-2B-instruct"
49
+ model = AutoModelForCausalLM.from_pretrained(model_name)
50
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
51
+
52
+ # Подготовка входного текста
53
+ input_text = "Напиши стихотворение о весне в России."
54
+
55
+ # Токенизация и генерация текста
56
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
57
+ output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)
58
+
59
+ # Декодирование и вывод результата
60
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
61
+ print(generated_text)
62
+ ```
63
+
64
+ #### Ответ модели / Model response:
65
+
66
+ > Весна в России это время обновления природы, когда природа пробуждается >от зимнего сна. Вот стихотворение, отражающее эту красоту:
67
+ >
68
+ > ---
69
+ >
70
+ > **Весна в России**
71
+ >
72
+ > Зимняя тишина утихла,
73
+ > Весна в России пришла.
74
+ > Солнце светит, словно в сказке,
75
+ > В небесах – птицы в полете.
76
+ >
77
+ > Снег пошел, ушел вдаль,
78
+ > И в каждом уголке весна.
79
+ > Лед промерз, вода в реке –
80
+ > Ветры вьют, и листья поют.
81
+ >
82
+ > Цветы распустились, как будто
83
+ > В честь весны, в честь жизни.
84
+ > Зеленая трава, как полотно,
85
+ > Под ногами – мягкость.
86
+ >
87
+ > Весна в России – это чудо,
88
+ > Счастье, что в сердце живет.
89
+ > И каждый день – праздник,
90
+ > Когда природа в цвету.
91
+ >
92
+ > ---
93
+ >
94
+ > Надеюсь, это стихотворение передало дух и красоту весны в России.
95
+
96
+ ## Метрики на ru_arena_general / Metrics on ru_arena_general
97
+
98
+ | Model | Score | 95% CI | Avg Tokens | Std Tokens | LC Score |
99
+ | ---------------------------------------------- | --------- | --------------- | ---------- | ---------- | --------- |
100
+ | suzume-llama-3-8B-multilingual-orpo-borda-half | 90.89 | +1.1 / -1.1 | 2495.38 | 1211.62 | 55.86 |
101
+ | mistral-nemo-instruct-2407 | 50.53 | +2.5 / -2.2 | 403.17 | 321.53 | 50.08 |
102
+ | sfr-iterative-dpo-llama-3-8b-r | 50.06 | +2.1 / -2.1 | 516.74 | 316.84 | 50.01 |
103
+ | gpt-3.5-turbo-0125 | 50.00 | +0.0 / -0.0 | 220.83 | 170.30 | 50.00 |
104
+ | glm-4-9b-chat | 49.75 | +1.9 / -2.3 | 568.81 | 448.76 | 49.96 |
105
+ | c4ai-command-r-v01 | 48.95 | +2.6 / -1.7 | 529.34 | 368.98 | 49.85 |
106
+ | llama-3-instruct-8b-sppo-iter3 | 47.45 | +2.0 / -2.2 | 502.27 | 304.27 | 49.63 |
107
+ | **Vikhrmodels-vikhr-gemma-2b-it** | **45.82** | **+2.4 / -2.0** | **722.83** | **710.71** | **49.40** |
108
+ | suzume-llama-3-8b-multilingual | 45.71 | +2.4 / -1.7 | 641.18 | 858.96 | 49.38 |
109
+ | yandex_gpt_pro | 45.11 | +2.2 / -2.5 | 345.30 | 277.64 | 49.30 |
110
+ | hermes-2-theta-llama-3-8b | 44.07 | +2.0 / -2.2 | 485.99 | 390.85 | 49.15 |
111
+ | gpt-3.5-turbo-1106 | 41.48 | +1.9 / -2.0 | 191.19 | 177.31 | 48.77 |
112
+ | llama-3-smaug-8b | 40.80 | +2.1 / -1.6 | 524.02 | 480.56 | 48.68 |
113
+ | llama-3-8b-saiga-suzume-ties | 39.94 | +2.0 / -1.7 | 763.27 | 699.39 | 48.55 |
114
+
115
+ ```
116
+ @article{nikolich2024vikhr,
117
+ title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian},
118
+ author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov},
119
+ journal={arXiv preprint arXiv:2405.13929},
120
+ year={2024},
121
+ url={https://arxiv.org/pdf/2405.13929}
122
+ }
123
+ ```