File size: 1,923 Bytes
9b611ee 86e92dd 9b611ee 86e92dd 9b611ee 86e92dd 9b611ee 95ba14e 9b611ee 86e92dd 9b611ee 95ba14e 9b611ee 95ba14e 9b611ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DeBERTa-finetuned-ner-S800
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa-finetuned-ner-S800
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0681
- Precision: 0.6874
- Recall: 0.7731
- F1: 0.7278
- Accuracy: 0.9771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 55 | 0.0748 | 0.5784 | 0.6457 | 0.6102 | 0.9699 |
| No log | 2.0 | 110 | 0.0709 | 0.6174 | 0.7773 | 0.6882 | 0.9750 |
| No log | 3.0 | 165 | 0.0670 | 0.6460 | 0.7899 | 0.7108 | 0.9758 |
| No log | 4.0 | 220 | 0.0628 | 0.6966 | 0.7717 | 0.7322 | 0.9775 |
| No log | 5.0 | 275 | 0.0681 | 0.6874 | 0.7731 | 0.7278 | 0.9771 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|