VirgiF's picture
End of training
5dd0a98 verified
|
raw
history blame
2.5 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: continue_pretrain_t5_base_10tokens
    results: []

continue_pretrain_t5_base_10tokens

This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0015
  • Rouge: {'rouge1': 0.15180664921665177, 'rouge2': 0.14241763000023774, 'rougeL': 0.1513952140128575, 'rougeLsum': 0.1517189553463021}
  • Exact Match: {'exact_match': 0.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 14
  • eval_batch_size: 14
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 28
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge Exact Match
0.1039 1.0 1786 4.8370 {'rouge1': 0.08468086761955296, 'rouge2': 0.07928600729695852, 'rougeL': 0.08453698334268148, 'rougeLsum': 0.08473098923719942} {'exact_match': 0.0}
0.0503 2.0 3572 4.9960 {'rouge1': 0.15080775818986453, 'rouge2': 0.1414201900527639, 'rougeL': 0.15034957154685738, 'rougeLsum': 0.1506605398259596} {'exact_match': 0.0}
0.0521 3.0 5358 5.0015 {'rouge1': 0.15180664921665177, 'rouge2': 0.14241763000023774, 'rougeL': 0.1513952140128575, 'rougeLsum': 0.1517189553463021} {'exact_match': 0.0}

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1