VitaliiVrublevskyi's picture
update model card README.md
81de10c
|
raw
history blame
2.79 kB
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: Llama-2-7b-hf-finetuned-mrpc
    results: []

Llama-2-7b-hf-finetuned-mrpc

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the glue dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.7941
  • F1: 0.8571
  • Loss: 0.4479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss
No log 1.0 230 0.7206 0.8155 0.6045
No log 2.0 460 0.6912 0.8158 0.6488
0.6326 3.0 690 0.7279 0.8235 0.5236
0.6326 4.0 920 0.7255 0.8282 0.5273
0.5602 5.0 1150 0.7402 0.8044 0.5246
0.5602 6.0 1380 0.75 0.8311 0.4893
0.5139 7.0 1610 0.7623 0.8289 0.4884
0.5139 8.0 1840 0.7402 0.8307 0.4989
0.4754 9.0 2070 0.7745 0.8435 0.4732
0.4754 10.0 2300 0.7672 0.8403 0.4716
0.5407 11.0 2530 0.7598 0.8393 0.4823
0.5407 12.0 2760 0.7451 0.8333 0.4782
0.5407 13.0 2990 0.7451 0.8333 0.4713
0.4951 14.0 3220 0.7819 0.8489 0.4553
0.4951 15.0 3450 0.7745 0.8506 0.4591
0.4724 16.0 3680 0.7770 0.8423 0.4631
0.4724 17.0 3910 0.8015 0.8576 0.4581
0.4455 18.0 4140 0.7819 0.8468 0.4548
0.4455 19.0 4370 0.7819 0.8484 0.4511
0.4354 20.0 4600 0.7941 0.8571 0.4479

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3