Edit model card

1_microsoft_deberta_V1.0

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5748
  • Map@3: 0.8700
  • Accuracy: 0.785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 21
  • total_train_batch_size: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Map@3 Accuracy
1.6136 0.02 25 1.6092 0.4850 0.335
1.6116 0.04 50 1.6063 0.7250 0.61
1.4598 0.05 75 1.2186 0.7575 0.63
1.0137 0.07 100 0.9068 0.7908 0.665
0.9483 0.09 125 0.9574 0.8108 0.69
0.9619 0.1 150 0.8634 0.8183 0.71
0.8679 0.12 175 0.7644 0.8292 0.73
0.8594 0.14 200 0.8161 0.8067 0.7
0.8105 0.16 225 0.8355 0.82 0.715
0.8315 0.17 250 0.7381 0.8275 0.73
0.8275 0.19 275 0.7636 0.8433 0.745
0.8252 0.21 300 0.7196 0.8217 0.73
0.7801 0.23 325 0.6940 0.8367 0.745
0.8078 0.24 350 0.7185 0.8567 0.775
0.7583 0.26 375 0.7007 0.8433 0.75
0.7772 0.28 400 0.7032 0.8417 0.75
0.8204 0.3 425 0.7062 0.8500 0.76
0.8269 0.32 450 0.7082 0.8617 0.785
0.7418 0.33 475 0.7288 0.8517 0.78
0.7376 0.35 500 0.7021 0.8633 0.78
0.7519 0.37 525 0.6943 0.8642 0.785
0.7469 0.39 550 0.6807 0.8725 0.805
0.7244 0.4 575 0.6622 0.8692 0.79
0.7297 0.42 600 0.6783 0.8583 0.775
0.7259 0.44 625 0.6788 0.8550 0.765
0.6893 0.46 650 0.6571 0.8625 0.785
0.6871 0.47 675 0.6587 0.8492 0.76
0.7003 0.49 700 0.6485 0.8683 0.785
0.7094 0.51 725 0.6320 0.8675 0.795
0.7052 0.53 750 0.6554 0.8583 0.78
0.6873 0.54 775 0.6121 0.8550 0.775
0.6152 0.56 800 0.6060 0.8675 0.785
0.6741 0.58 825 0.6191 0.8808 0.815
0.7098 0.59 850 0.6213 0.8817 0.815
0.7029 0.61 875 0.6533 0.8725 0.79
0.6489 0.63 900 0.6127 0.8667 0.79
0.7289 0.65 925 0.6261 0.8750 0.81
0.6589 0.67 950 0.6019 0.8708 0.8
0.6876 0.68 975 0.6076 0.8725 0.805
0.6624 0.7 1000 0.5810 0.8708 0.79
0.6746 0.72 1025 0.5922 0.8708 0.79
0.6644 0.73 1050 0.5827 0.8675 0.785
0.668 0.75 1075 0.5814 0.8725 0.795
0.6115 0.77 1100 0.5680 0.8750 0.8
0.6799 0.79 1125 0.5767 0.8750 0.8
0.6466 0.81 1150 0.5700 0.8725 0.795
0.6765 0.82 1175 0.5700 0.8717 0.79
0.6936 0.84 1200 0.5758 0.8683 0.785
0.6239 0.86 1225 0.5748 0.8700 0.785

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.9.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for VuongQuoc/1_microsoft_deberta_V1.0

Finetuned
(116)
this model