metadata
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: checkpoints_29_9_microsoft_deberta_V1
results: []
checkpoints_29_9_microsoft_deberta_V1
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6667
- Map@3: 0.8692
- Accuracy: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy |
---|---|---|---|---|---|
1.6098 | 0.05 | 100 | 1.6090 | 0.5250 | 0.38 |
1.6092 | 0.11 | 200 | 1.6040 | 0.7408 | 0.63 |
1.1308 | 0.16 | 300 | 1.1807 | 0.7475 | 0.63 |
1.0343 | 0.21 | 400 | 0.9997 | 0.8108 | 0.705 |
0.9673 | 0.27 | 500 | 0.9104 | 0.8042 | 0.69 |
0.9579 | 0.32 | 600 | 0.8178 | 0.8542 | 0.775 |
0.8286 | 0.37 | 700 | 0.7612 | 0.8592 | 0.785 |
0.8198 | 0.43 | 800 | 0.7236 | 0.8600 | 0.795 |
0.8379 | 0.48 | 900 | 0.7237 | 0.8583 | 0.79 |
0.8646 | 0.53 | 1000 | 0.7052 | 0.8583 | 0.785 |
0.8876 | 0.59 | 1100 | 0.6899 | 0.8692 | 0.8 |
0.8598 | 0.64 | 1200 | 0.6897 | 0.8683 | 0.8 |
0.8218 | 0.69 | 1300 | 0.6655 | 0.8725 | 0.805 |
0.8695 | 0.75 | 1400 | 0.6742 | 0.8692 | 0.8 |
0.8136 | 0.8 | 1500 | 0.6739 | 0.8692 | 0.8 |
0.7843 | 0.85 | 1600 | 0.6644 | 0.8725 | 0.81 |
0.8477 | 0.91 | 1700 | 0.6655 | 0.8717 | 0.805 |
0.7881 | 0.96 | 1800 | 0.6667 | 0.8692 | 0.8 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.0
- Datasets 2.9.0
- Tokenizers 0.13.3