vit-base-blur / README.md
WT-MM's picture
Update README.md
c059546
|
raw
history blame
1.83 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-blur
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: blurryimages
          type: blurryimages
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

vit-base-blur

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on a blurry images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0007
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0027 2.27 100 0.0565 0.9870
0.0013 4.55 200 0.0012 1.0
0.0008 6.82 300 0.0008 1.0
0.0007 9.09 400 0.0007 1.0

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3