vit-base-blur / README.md
WT-MM's picture
Update README.md
c85b499
|
raw
history blame
2.51 kB
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-blur
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: blurry images
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

vit-base-blur

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the blurry images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0008
  • Accuracy: 1.0

Model description

Model trained for binary classification between 'noisy' (blurry) and clean images, where 'noisy' images are the result of unfinished/insufficient passes from an LDM for image generation

Intended uses & limitations

More information needed

Training and evaluation data

1000ish clean and blurry images using 30 and 10 steps respectively on SD2.1

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0082 1.02 100 0.0107 1.0
0.0079 2.04 200 0.0052 1.0
0.0029 3.06 300 0.0028 1.0
0.002 4.08 400 0.0020 1.0
0.0016 5.1 500 0.0015 1.0
0.0013 6.12 600 0.0013 1.0
0.0011 7.14 700 0.0011 1.0
0.001 8.16 800 0.0010 1.0
0.0009 9.18 900 0.0009 1.0
0.0008 10.2 1000 0.0008 1.0
0.0008 11.22 1100 0.0008 1.0

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3