bert-large-uncased-whole-word-masking-finetuned-intel-oneapi-llm-dataset
This model is a fine-tuned version of bert-large-uncased-whole-word-masking-finetuned-squad on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.3381
- Train End Logits Accuracy: 0.4801
- Train Start Logits Accuracy: 0.4324
- Validation Loss: 2.1970
- Validation End Logits Accuracy: 0.5132
- Validation Start Logits Accuracy: 0.4554
- Epoch: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 8844, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
2.4656 | 0.4710 | 0.4189 | 2.2246 | 0.5103 | 0.4548 | 0 |
2.3381 | 0.4801 | 0.4324 | 2.1970 | 0.5132 | 0.4554 | 1 |
Framework versions
- Transformers 4.34.0
- TensorFlow 2.12.0
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.