Universal AnglE Embeddings
Collection
AnglE(https://arxiv.org/abs/2309.12871) series Embeddings.
•
4 items
•
Updated
•
4
📢 WhereIsAI/UAE-Large-V1
is licensed under MIT. Feel free to use it in any scenario.
If you use it for academic papers, you could cite us via 👉 citation info.
🤝 Follow us on:
Welcome to using AnglE to train and infer powerful sentence embeddings.
🏆 Achievements
WhereIsAI/UAE-Large-V1
achieves SOTA on the MTEB Leaderboard with an average score of 64.64!🧑🤝🧑 Siblings:
python -m pip install -U angle-emb
There is no need to specify any prompts.
from angle_emb import AnglE
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
doc_vecs = angle.encode([
'The weather is great!',
'The weather is very good!',
'i am going to bed'
], normalize_embedding=True)
for i, dv1 in enumerate(doc_vecs):
for dv2 in doc_vecs[i+1:]:
print(cosine_similarity(dv1, dv2))
For retrieval purposes, please use the prompt Prompts.C
for query (not for document).
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
qv = angle.encode(Prompts.C.format(text='what is the weather?'))
doc_vecs = angle.encode([
'The weather is great!',
'it is rainy today.',
'i am going to bed'
])
for dv in doc_vecs:
print(cosine_similarity(qv[0], dv))
from angle_emb import Prompts
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("WhereIsAI/UAE-Large-V1").cuda()
qv = model.encode(Prompts.C.format(text='what is the weather?'))
doc_vecs = model.encode([
'The weather is great!',
'it is rainy today.',
'i am going to bed'
])
for dv in doc_vecs:
print(1 - spatial.distance.cosine(qv, dv))
If you use our pre-trained models, welcome to support us by citing our work:
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}