klue_bert_base / README.md
Woonn's picture
update model card README.md
712cd95
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - nsmc
metrics:
  - accuracy
  - f1
model-index:
  - name: klue_bert_base
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: nsmc
          type: nsmc
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.90564
          - name: F1
            type: f1
            value: 0.9056337214649489

klue_bert_base

This model is a fine-tuned version of klue/bert-base on the nsmc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2415
  • Accuracy: 0.9056
  • F1: 0.9056

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.2742 1.0 2344 0.2381 0.9005 0.9005
0.1865 2.0 4688 0.2415 0.9056 0.9056

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2