Xanadu00/galaxy_classifier_mobilevit_3
This model is a fine-tuned version of apple/mobilevit-small on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1914
- Train Accuracy: 0.9341
- Validation Loss: 0.5148
- Validation Accuracy: 0.8512
- Epoch: 16
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.01, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.002, 'decay_steps': 10000, 'decay_rate': 0.01, 'staircase': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
1.1049 | 0.6128 | 0.7422 | 0.7517 | 0 |
0.7149 | 0.7564 | 0.6376 | 0.7821 | 1 |
0.6080 | 0.7945 | 0.6947 | 0.7745 | 2 |
0.5376 | 0.8160 | 0.5589 | 0.8134 | 3 |
0.4977 | 0.8279 | 0.5458 | 0.8162 | 4 |
0.4564 | 0.8407 | 0.4799 | 0.8441 | 5 |
0.4271 | 0.8557 | 0.4765 | 0.8413 | 6 |
0.3957 | 0.8619 | 0.4790 | 0.8453 | 7 |
0.3701 | 0.8741 | 0.5376 | 0.8329 | 8 |
0.3425 | 0.8829 | 0.4359 | 0.8619 | 9 |
0.3192 | 0.8892 | 0.4475 | 0.8585 | 10 |
0.2972 | 0.8967 | 0.4143 | 0.8712 | 11 |
0.2691 | 0.9080 | 0.4819 | 0.8498 | 12 |
0.2445 | 0.9144 | 0.4543 | 0.8563 | 13 |
0.2261 | 0.9220 | 0.4221 | 0.8689 | 14 |
0.2127 | 0.9251 | 0.5076 | 0.8540 | 15 |
0.1914 | 0.9341 | 0.5148 | 0.8512 | 16 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.