ZhafranR/LLaMa_3.2_3B_Instruct_Text2SQL-Q4_K_M-GGUF
This model was converted to GGUF format from XeAI/LLaMa_3.2_3B_Instruct_Text2SQL
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama-cpp-python
from llama_cpp import Llama
# Load the model
model = Llama(
model_path="path_to_your_model.gguf",
n_ctx=2048,
n_batch=512,
n_threads=6
)
# Generate text
output = model.create_completion(
"Your prompt here",
max_tokens=512,
temperature=0.7,
top_p=0.95,
top_k=40,
repeat_penalty=1.1
)
print(output['choices'][0]['text'])
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo XeAI/LLaMa_3.2_3B_Instruct_Text2SQL-Q4_K_M-GGUF --hf-file llama_3.2_3b_instruct_text2sql-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo XeAI/LLaMa_3.2_3B_Instruct_Text2SQL-Q4_K_M-GGUF --hf-file llama_3.2_3b_instruct_text2sql-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo XeAI/LLaMa_3.2_3B_Instruct_Text2SQL-Q4_K_M-GGUF --hf-file llama_3.2_3b_instruct_text2sql-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo XeAI/LLaMa_3.2_3B_Instruct_Text2SQL-Q4_K_M-GGUF --hf-file llama_3.2_3b_instruct_text2sql-q4_k_m.gguf -c 2048
- Downloads last month
- 18
Model tree for XeAI/LLaMa_3.2_3B_Instruct_Text2SQL-Q4_K_M-GGUF_Legacy
Base model
XeAI/LLaMa_3.2_3B_Instruct_Text2SQL