Xenova HF staff commited on
Commit
5810807
1 Parent(s): 7069a32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -9
README.md CHANGED
@@ -5,7 +5,9 @@ tags:
5
  - portrait-matting
6
  ---
7
 
8
- https://github.com/ZHKKKe/MODNet with ONNX weights to be compatible with Transformers.js.
 
 
9
 
10
  ## Usage (Transformers.js)
11
 
@@ -17,11 +19,11 @@ npm i @xenova/transformers
17
  You can then use the model for portrait matting, as follows:
18
 
19
  ```js
20
- import { AutoProcessor, RawImage, AutoModel } from '@xenova/transformers';
21
 
22
  // Load model and processor
23
- const model = await AutoModel.from_pretrained('Xenova/modnet-onnx', { quantized: false });
24
- const processor = await AutoProcessor.from_pretrained('Xenova/modnet-onnx');
25
 
26
  // Load image from URL
27
  const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024';
@@ -45,8 +47,3 @@ mask.save('mask.png');
45
  ---
46
 
47
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
48
-
49
-
50
-
51
-
52
- For more information, see the original [repo](https://github.com/ZHKKKe/MODNet) and example [colab](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing).
 
5
  - portrait-matting
6
  ---
7
 
8
+ # MODNet: Trimap-Free Portrait Matting in Real Time
9
+
10
+ For more information, see the original [repo](https://github.com/ZHKKKe/MODNet) and example [colab](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing).
11
 
12
  ## Usage (Transformers.js)
13
 
 
19
  You can then use the model for portrait matting, as follows:
20
 
21
  ```js
22
+ import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
23
 
24
  // Load model and processor
25
+ const model = await AutoModel.from_pretrained('Xenova/modnet', { quantized: false });
26
+ const processor = await AutoProcessor.from_pretrained('Xenova/modnet');
27
 
28
  // Load image from URL
29
  const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024';
 
47
  ---
48
 
49
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).