|
--- |
|
base_model: qnguyen3/nanoLLaVA |
|
language: |
|
- en |
|
library_name: transformers.js |
|
license: apache-2.0 |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- llava |
|
- multimodal |
|
- qwen |
|
--- |
|
|
|
https://huggingface.co/qnguyen3/nanoLLaVA with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** |
|
```js |
|
import { AutoProcessor, AutoTokenizer, LlavaForConditionalGeneration, RawImage } from '@huggingface/transformers'; |
|
|
|
// Load tokenizer, processor and model |
|
const model_id = 'Xenova/nanoLLaVA'; |
|
const tokenizer = await AutoTokenizer.from_pretrained(model_id); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
const model = await LlavaForConditionalGeneration.from_pretrained(model_id, { |
|
dtype: { |
|
embed_tokens: 'fp16', // or 'fp32' or 'q8' |
|
vision_encoder: 'fp16', // or 'fp32' or 'q8' |
|
decoder_model_merged: 'q4', // or 'q8' |
|
}, |
|
// device: 'webgpu', |
|
}); |
|
|
|
// Prepare text inputs |
|
const prompt = 'What does the text say?'; |
|
const messages = [ |
|
{ role: 'system', content: 'Answer the question.' }, |
|
{ role: 'user', content: `<image>\n${prompt}` } |
|
] |
|
const text = tokenizer.apply_chat_template(messages, { tokenize: false, add_generation_prompt: true }); |
|
const text_inputs = tokenizer(text); |
|
|
|
// Prepare vision inputs |
|
const url = 'https://huggingface.co/qnguyen3/nanoLLaVA/resolve/main/example_1.png'; |
|
const image = await RawImage.fromURL(url); |
|
const vision_inputs = await processor(image); |
|
|
|
// Generate response |
|
const { past_key_values, sequences } = await model.generate({ |
|
...text_inputs, |
|
...vision_inputs, |
|
do_sample: false, |
|
max_new_tokens: 64, |
|
return_dict_in_generate: true, |
|
}); |
|
|
|
// Decode output |
|
const answer = tokenizer.decode( |
|
sequences.slice(0, [text_inputs.input_ids.dims[1], null]), |
|
{ skip_special_tokens: true }, |
|
); |
|
console.log(answer); |
|
// The text reads "Small but mighty". |
|
|
|
const new_messages = [ |
|
...messages, |
|
{ role: 'assistant', content: answer }, |
|
{ role: 'user', content: 'How does the text correlate to the context of the image?' } |
|
] |
|
const new_text = tokenizer.apply_chat_template(new_messages, { tokenize: false, add_generation_prompt: true }); |
|
const new_text_inputs = tokenizer(new_text); |
|
|
|
// Generate another response |
|
const output = await model.generate({ |
|
...new_text_inputs, |
|
past_key_values, |
|
do_sample: false, |
|
max_new_tokens: 256, |
|
}); |
|
const new_answer = tokenizer.decode( |
|
output.slice(0, [new_text_inputs.input_ids.dims[1], null]), |
|
{ skip_special_tokens: true }, |
|
); |
|
console.log(new_answer); |
|
// The context of the image is that of a playful and humorous illustration of a mouse holding a weightlifting bar. The text "Small but mighty" is a playful reference to the mouse's size and strength. |
|
``` |
|
|
|
**Demos:** |
|
|
|
We also released an online demo, which you can try yourself: https://huggingface.co/spaces/Xenova/experimental-nanollava-webgpu |
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/0T-aNjgXt6PGL3qIl8wBc.mp4"></video> |
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/yBZAew6wKcMxGn9MgW6DN.mp4"></video> |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |