|
--- |
|
library_name: transformers.js |
|
tags: |
|
- pose-estimation |
|
license: agpl-3.0 |
|
--- |
|
|
|
YOLOv8l-pose with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Perform pose-estimation w/ `Xenova/yolov8l-pose`. |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; |
|
|
|
// Load model and processor |
|
const model_id = 'Xenova/yolov8l-pose'; |
|
const model = await AutoModel.from_pretrained(model_id); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
|
|
// Read image and run processor |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; |
|
const image = await RawImage.read(url); |
|
const { pixel_values } = await processor(image); |
|
|
|
// Set thresholds |
|
const threshold = 0.3; // Remove detections with low confidence |
|
const iouThreshold = 0.5; // Used to remove duplicates |
|
const pointThreshold = 0.3; // Hide uncertain points |
|
|
|
// Predict bounding boxes and keypoints |
|
const { output0 } = await model({ images: pixel_values }); |
|
|
|
// Post-process: |
|
const permuted = output0[0].transpose(1, 0); |
|
// `permuted` is a Tensor of shape [ 8400, 56 ]: |
|
// - 8400 potential detections |
|
// - 56 parameters for each box: |
|
// - 4 for the bounding box dimensions (x-center, y-center, width, height) |
|
// - 1 for the confidence score |
|
// - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy) |
|
|
|
// Example code to format it nicely: |
|
const results = []; |
|
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2); |
|
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) { |
|
if (score < threshold) continue; |
|
|
|
// Get pixel values, taking into account the original image size |
|
const x1 = (xc - w / 2) / scaledWidth * image.width; |
|
const y1 = (yc - h / 2) / scaledHeight * image.height; |
|
const x2 = (xc + w / 2) / scaledWidth * image.width; |
|
const y2 = (yc + h / 2) / scaledHeight * image.height; |
|
results.push({ x1, x2, y1, y2, score, keypoints }) |
|
} |
|
|
|
|
|
// Define helper functions |
|
function removeDuplicates(detections, iouThreshold) { |
|
const filteredDetections = []; |
|
|
|
for (const detection of detections) { |
|
let isDuplicate = false; |
|
let duplicateIndex = -1; |
|
let maxIoU = 0; |
|
|
|
for (let i = 0; i < filteredDetections.length; ++i) { |
|
const filteredDetection = filteredDetections[i]; |
|
const iou = calculateIoU(detection, filteredDetection); |
|
if (iou > iouThreshold) { |
|
isDuplicate = true; |
|
if (iou > maxIoU) { |
|
maxIoU = iou; |
|
duplicateIndex = i; |
|
} |
|
} |
|
} |
|
|
|
if (!isDuplicate) { |
|
filteredDetections.push(detection); |
|
} else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) { |
|
filteredDetections[duplicateIndex] = detection; |
|
} |
|
} |
|
|
|
return filteredDetections; |
|
} |
|
|
|
function calculateIoU(detection1, detection2) { |
|
const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1)); |
|
const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1)); |
|
const overlapArea = xOverlap * yOverlap; |
|
|
|
const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1); |
|
const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1); |
|
const unionArea = area1 + area2 - overlapArea; |
|
|
|
return overlapArea / unionArea; |
|
} |
|
|
|
const filteredResults = removeDuplicates(results, iouThreshold); |
|
|
|
// Display results |
|
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) { |
|
console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`) |
|
for (let i = 0; i < keypoints.length; i += 3) { |
|
const label = model.config.id2label[Math.floor(i / 3)]; |
|
const [x, y, point_score] = keypoints.slice(i, i + 3); |
|
if (point_score < pointThreshold) continue; |
|
console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`); |
|
} |
|
} |
|
``` |
|
|
|
<details> |
|
|
|
<summary>See example output</summary> |
|
|
|
``` |
|
Found person at [539.2378807067871, 41.92433733940124, 642.9805946350098, 334.98332471847533] with score 0.727 |
|
- nose: (445.67, 84.43) with score 0.976 |
|
- left_eye: (451.88, 76.89) with score 0.983 |
|
- right_eye: (440.39, 76.33) with score 0.888 |
|
- left_ear: (463.89, 81.68) with score 0.837 |
|
- left_shoulder: (478.95, 123.91) with score 0.993 |
|
- right_shoulder: (419.52, 123.44) with score 0.694 |
|
- left_elbow: (501.07, 180.46) with score 0.979 |
|
- left_wrist: (504.60, 238.34) with score 0.950 |
|
- left_hip: (469.53, 220.77) with score 0.985 |
|
- right_hip: (431.21, 222.54) with score 0.875 |
|
- left_knee: (473.45, 302.16) with score 0.972 |
|
- right_knee: (432.61, 302.91) with score 0.759 |
|
- left_ankle: (467.74, 380.37) with score 0.874 |
|
- right_ankle: (438.06, 381.94) with score 0.516 |
|
Found person at [0.59722900390625, 59.435689163208, 157.59026527404785, 370.3985949516296] with score 0.927 |
|
- nose: (56.99, 100.53) with score 0.959 |
|
- left_eye: (63.46, 94.19) with score 0.930 |
|
- right_eye: (51.11, 96.48) with score 0.846 |
|
- left_ear: (73.43, 97.84) with score 0.798 |
|
- right_ear: (46.36, 99.41) with score 0.484 |
|
- left_shoulder: (84.93, 134.17) with score 0.988 |
|
- right_shoulder: (41.60, 133.96) with score 0.976 |
|
- left_elbow: (96.33, 189.89) with score 0.959 |
|
- right_elbow: (24.60, 192.73) with score 0.879 |
|
- left_wrist: (104.79, 258.62) with score 0.928 |
|
- right_wrist: (7.89, 238.55) with score 0.830 |
|
- left_hip: (83.23, 234.45) with score 0.993 |
|
- right_hip: (53.89, 235.50) with score 0.991 |
|
- left_knee: (87.80, 326.73) with score 0.988 |
|
- right_knee: (49.44, 327.89) with score 0.982 |
|
- left_ankle: (100.93, 416.88) with score 0.925 |
|
- right_ankle: (44.52, 421.24) with score 0.912 |
|
Found person at [112.88127899169922, 13.998864459991454, 504.09095764160156, 533.4011061668397] with score 0.943 |
|
- nose: (122.64, 98.36) with score 0.366 |
|
- left_ear: (132.43, 77.58) with score 0.794 |
|
- left_shoulder: (196.67, 124.78) with score 0.999 |
|
- right_shoulder: (176.97, 142.00) with score 0.998 |
|
- left_elbow: (256.79, 196.00) with score 0.998 |
|
- right_elbow: (182.85, 279.47) with score 0.994 |
|
- left_wrist: (305.44, 270.10) with score 0.982 |
|
- right_wrist: (129.72, 281.09) with score 0.963 |
|
- left_hip: (275.59, 290.38) with score 1.000 |
|
- right_hip: (263.91, 310.60) with score 1.000 |
|
- left_knee: (237.89, 445.88) with score 0.998 |
|
- right_knee: (249.66, 477.34) with score 0.998 |
|
- left_ankle: (349.25, 438.70) with score 0.940 |
|
- right_ankle: (338.20, 586.62) with score 0.935 |
|
Found person at [424.730339050293, 67.2046113729477, 639.5703506469727, 493.03533136844635] with score 0.944 |
|
- nose: (416.55, 141.74) with score 0.991 |
|
- left_eye: (428.51, 130.99) with score 0.962 |
|
- right_eye: (408.83, 130.86) with score 0.938 |
|
- left_ear: (441.95, 133.48) with score 0.832 |
|
- right_ear: (399.56, 133.27) with score 0.652 |
|
- left_shoulder: (440.79, 193.75) with score 0.999 |
|
- right_shoulder: (372.38, 208.42) with score 0.998 |
|
- left_elbow: (453.56, 290.07) with score 0.995 |
|
- right_elbow: (350.56, 262.83) with score 0.992 |
|
- left_wrist: (482.36, 363.64) with score 0.995 |
|
- right_wrist: (398.84, 267.30) with score 0.993 |
|
- left_hip: (435.96, 362.27) with score 0.999 |
|
- right_hip: (388.40, 383.41) with score 0.999 |
|
- left_knee: (460.50, 425.60) with score 0.994 |
|
- right_knee: (403.19, 516.76) with score 0.992 |
|
- left_ankle: (459.31, 558.19) with score 0.893 |
|
- right_ankle: (426.29, 552.55) with score 0.868 |
|
``` |
|
</details> |