Edit model card

YOLOv8x-pose-p6 with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Perform pose-estimation w/ Xenova/yolov8x-pose-p6.

import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';

// Load model and processor
const model_id = 'Xenova/yolov8x-pose-p6';
const model = await AutoModel.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);

// Read image and run processor
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
const image = await RawImage.read(url);
const { pixel_values } = await processor(image);

// Set thresholds
const threshold = 0.3; // Remove detections with low confidence
const iouThreshold = 0.5; // Used to remove duplicates
const pointThreshold = 0.3; // Hide uncertain points

// Predict bounding boxes and keypoints
const { output0 } = await model({ images: pixel_values });

// Post-process:
const permuted = output0[0].transpose(1, 0);
// `permuted` is a Tensor of shape [ 8400, 56 ]:
// - 8400 potential detections
// - 56 parameters for each box:
//   - 4 for the bounding box dimensions (x-center, y-center, width, height)
//   - 1 for the confidence score
//   - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)

// Example code to format it nicely:
const results = [];
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
    if (score < threshold) continue;

    // Get pixel values, taking into account the original image size
    const x1 = (xc - w / 2) / scaledWidth * image.width;
    const y1 = (yc - h / 2) / scaledHeight * image.height;
    const x2 = (xc + w / 2) / scaledWidth * image.width;
    const y2 = (yc + h / 2) / scaledHeight * image.height;
    results.push({ x1, x2, y1, y2, score, keypoints })
}


// Define helper functions
function removeDuplicates(detections, iouThreshold) {
    const filteredDetections = [];

    for (const detection of detections) {
        let isDuplicate = false;
        let duplicateIndex = -1;
        let maxIoU = 0;

        for (let i = 0; i < filteredDetections.length; ++i) {
            const filteredDetection = filteredDetections[i];
            const iou = calculateIoU(detection, filteredDetection);
            if (iou > iouThreshold) {
                isDuplicate = true;
                if (iou > maxIoU) {
                    maxIoU = iou;
                    duplicateIndex = i;
                }
            }
        }

        if (!isDuplicate) {
            filteredDetections.push(detection);
        } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
            filteredDetections[duplicateIndex] = detection;
        }
    }

    return filteredDetections;
}

function calculateIoU(detection1, detection2) {
    const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
    const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
    const overlapArea = xOverlap * yOverlap;

    const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
    const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
    const unionArea = area1 + area2 - overlapArea;

    return overlapArea / unionArea;
}

const filteredResults = removeDuplicates(results, iouThreshold);

// Display results
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
    console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
    for (let i = 0; i < keypoints.length; i += 3) {
        const label = model.config.id2label[Math.floor(i / 3)];
        const [x, y, point_score] = keypoints.slice(i, i + 3);
        if (point_score < pointThreshold) continue;
        console.log(`  - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
    }
}
See example output
Found person at [535.95703125, 43.12074284553528, 644.3259429931641, 337.3436294078827] with score 0.760
  - nose: (885.58, 179.72) with score 0.975
  - left_eye: (897.09, 165.24) with score 0.976
  - right_eye: (874.85, 164.54) with score 0.851
  - left_ear: (914.39, 169.48) with score 0.806
  - left_shoulder: (947.49, 252.34) with score 0.996
  - right_shoulder: (840.67, 244.42) with score 0.665
  - left_elbow: (1001.36, 351.66) with score 0.983
  - left_wrist: (1011.84, 472.31) with score 0.954
  - left_hip: (931.52, 446.28) with score 0.986
  - right_hip: (860.66, 442.87) with score 0.828
  - left_knee: (930.67, 625.64) with score 0.979
  - right_knee: (872.17, 620.36) with score 0.735
  - left_ankle: (929.01, 772.34) with score 0.880
  - right_ankle: (882.23, 778.68) with score 0.454
Found person at [0.4024791717529297, 59.50179467201233, 156.87244415283203, 370.64377751350406] with score 0.853
  - nose: (115.39, 198.06) with score 0.918
  - left_eye: (120.26, 177.71) with score 0.830
  - right_eye: (105.47, 179.69) with score 0.757
  - left_ear: (144.87, 185.18) with score 0.711
  - right_ear: (97.69, 188.45) with score 0.468
  - left_shoulder: (178.03, 268.88) with score 0.975
  - right_shoulder: (80.69, 273.99) with score 0.954
  - left_elbow: (203.06, 383.33) with score 0.923
  - right_elbow: (43.32, 376.35) with score 0.856
  - left_wrist: (215.74, 504.02) with score 0.888
  - right_wrist: (6.77, 462.65) with score 0.812
  - left_hip: (165.70, 473.24) with score 0.990
  - right_hip: (97.84, 471.69) with score 0.986
  - left_knee: (183.26, 646.61) with score 0.991
  - right_knee: (104.04, 651.17) with score 0.989
  - left_ankle: (199.88, 823.24) with score 0.966
  - right_ankle: (104.66, 827.66) with score 0.963
Found person at [107.49130249023438, 12.557352638244629, 501.3542175292969, 527.4827188491821] with score 0.872
  - nose: (246.06, 180.81) with score 0.722
  - left_eye: (236.99, 148.85) with score 0.523
  - left_ear: (289.26, 152.23) with score 0.770
  - left_shoulder: (391.63, 256.55) with score 0.992
  - right_shoulder: (363.28, 294.56) with score 0.979
  - left_elbow: (514.37, 404.61) with score 0.990
  - right_elbow: (353.58, 523.61) with score 0.957
  - left_wrist: (607.64, 530.43) with score 0.985
  - right_wrist: (246.78, 536.33) with score 0.950
  - left_hip: (563.45, 577.89) with score 0.998
  - right_hip: (544.08, 613.29) with score 0.997
  - left_knee: (466.57, 862.51) with score 0.996
  - right_knee: (518.49, 977.99) with score 0.996
  - left_ankle: (691.56, 844.49) with score 0.960
  - right_ankle: (671.32, 1100.90) with score 0.953
Found person at [424.73594665527344, 68.82870757579803, 640.3419494628906, 492.8904126405716] with score 0.887
  - nose: (840.26, 289.19) with score 0.991
  - left_eye: (851.23, 259.92) with score 0.956
  - right_eye: (823.10, 256.35) with score 0.955
  - left_ear: (889.52, 278.10) with score 0.668
  - right_ear: (799.80, 264.64) with score 0.771
  - left_shoulder: (903.87, 398.65) with score 0.997
  - right_shoulder: (743.88, 403.37) with score 0.988
  - left_elbow: (921.63, 589.83) with score 0.989
  - right_elbow: (699.56, 527.09) with score 0.934
  - left_wrist: (959.21, 728.84) with score 0.984
  - right_wrist: (790.88, 519.34) with score 0.945
  - left_hip: (873.51, 720.07) with score 0.996
  - right_hip: (762.29, 760.91) with score 0.990
  - left_knee: (945.33, 841.65) with score 0.987
  - right_knee: (813.06, 1072.57) with score 0.964
  - left_ankle: (918.48, 1129.20) with score 0.871
  - right_ankle: (886.91, 1053.95) with score 0.716
Downloads last month
33
Inference API
Unable to determine this model’s pipeline type. Check the docs .