|
--- |
|
license: apache-2.0 |
|
--- |
|
# Intruduction |
|
We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is designed for efficient deployment on consumer GPU servers. |
|
Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems. |
|
|
|
Refer to [our paper](https://arxiv.org/pdf/2405.09215) and [github](https://github.com/XiaoduoAILab/XmodelVLM) for more details! |
|
|
|
To use Xmodel_VLM for the inference, all you need to do is to input a few lines of codes as demonstrated below. **However, please make sure that you are using the latest code and related virtual environments.** |
|
|
|
## Inference example |
|
``` |
|
import sys |
|
import torch |
|
import argparse |
|
from PIL import Image |
|
from pathlib import Path |
|
import time |
|
sys.path.append(str(Path(__file__).parent.parent.resolve())) |
|
|
|
from xmodelvlm.model.xmodelvlm import load_pretrained_model |
|
from xmodelvlm.conversation import conv_templates, SeparatorStyle |
|
from xmodelvlm.utils import disable_torch_init, process_images, tokenizer_image_token, KeywordsStoppingCriteria |
|
from xmodelvlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN |
|
|
|
def inference_once(args): |
|
disable_torch_init() |
|
model_name = args.model_path.split('/')[-1] |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.load_8bit, args.load_4bit) |
|
|
|
images = [Image.open(args.image_file).convert("RGB")] |
|
images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16) |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + args.prompt) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
# Input |
|
input_ids = (tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()) |
|
stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids) |
|
# Inference |
|
with torch.inference_mode(): |
|
start_time = time.time() |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images_tensor, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
max_new_tokens=args.max_new_tokens, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria], |
|
) |
|
end_time = time.time() |
|
execution_time = end_time-start_time |
|
print("the execution time (secend): ", execution_time) |
|
# Result-Decode |
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids") |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[: -len(stop_str)] |
|
print(f"๐ {model_name}: {outputs.strip()}\n") |
|
if __name__ == '__main__': |
|
model_path = "XiaoduoAILab/Xmodel_VLM" # model weight file |
|
image_file = "assets/demo.jpg" # image file |
|
prompt_str = "Who is the author of this book?\nAnswer the question using a single word or phrase." |
|
# (or) What is the title of this book? |
|
# (or) Is this book related to Education & Teaching? |
|
|
|
args = type('Args', (), { |
|
"model_path": model_path, |
|
"image_file": image_file, |
|
"prompt": prompt_str, |
|
"conv_mode": "v1", |
|
"temperature": 0, |
|
"top_p": None, |
|
"num_beams": 1, |
|
"max_new_tokens": 512, |
|
"load_8bit": False, |
|
"load_4bit": False, |
|
})() |
|
|
|
inference_once(args) |
|
``` |
|
|
|
<center> |
|
|
|
Prompt: **Who is the author of this book?\nAnswer the question using a single word or phrase.** |
|
![Book Cover](https://github.com/XiaoduoAILab/XmodelVLM/blob/main/assets/demo.jpg?raw=true) |
|
Author: **Susan Wise Bauer** |
|
|
|
</center> |
|
|
|
## Evaluation |
|
|
|
We evaluate the multimodal performance across a variety of datasets: **VizWiz**, **SQA<sup>I</sup>**, **VQA<sup>T</sup>**, **POPE**, **GQA**, **MMB**, **MMB<sup>CN</sup>** |
|
, **MM-Vet**, and **MME**. Our analysis, as depicted In the following table. |
|
|
|
| Method | LLM | Res. | VizWiz | SQA | VQA | POPE | GQA | MMB | MMB<sup>CN</sup> | MM-Vet | MME | |
|
|:--------------:|:----------------:|:----:|:------:|:----:|:----:|:----:|:----:|:----:|:--------:|:------:|:------:| |
|
| Openflamingo | MPT-7B | 336 | - | - | 33.6 | - | - | 4.6 | - | - | - | |
|
| BLIP-2 | Vicuna-13B | 224 | - | 61.0 | 42.5 | 85.3 | 41.0 | - | - | - | 1293.8 | |
|
| MiniGPT-4 | Vicuna-7B | 224 | - | - | - | - | 32.2 | 23.0 | - | - | 581.7 | |
|
| InstructBLIP | Vicuna-7B | 224 | - | 60.5 | 50.1 | - | 49.2 | - | - | - | - | |
|
| InstructBLIP | Vicuna-13B | 224 | - | 63.1 | 50.7 | 78.9 | 49.5 | - | - | - | 1212.8 | |
|
| Shikra | Vicuna-13B | 224 | - | - | - | - | - | 58.8 | - | - | - | |
|
| Qwen-VL | Qwen-7B | 448 | - | 67.1 | 63.8 | - | 59.3 | 38.2 | - | - | 1487.6 | |
|
| MiniGPT-v2 | LLaMA-7B | 448 | - | - | - | - | 60.3 | 12.2 | - | - | - | |
|
| LLaVA-v1.5-13B | Vicuna-13B | 336 | 53.6 | 71.6 | 61.3 | 85.9 | 63.3 | 67.7 | 63.6 | 35.4 | 1531.3 | |
|
| MobileVLM 1.7 | MobileLLaMA 1.4B | 336 | 26.3 | 54.7 | 41.5 | 84.5 | 56.1 | 53.2 | 16.67 | 21.7 | 1196.2 | |
|
| **Xmodel-VLM** | **Xmodel-LM 1.1B** | **336** | **41.7** | **53.3** | **39.9** | **85.9** | **58.3** | **52.0** | **45.7** | **21.8** | **1250.7** | |
|
|