metadata
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-conll2003-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9459188783174762
- name: Recall
type: recall
value: 0.9537192864355436
- name: F1
type: f1
value: 0.94980306712478
- name: Accuracy
type: accuracy
value: 0.9911218410498034
test-conll2003-ner
This model is a fine-tuned version of xlm-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0470
- Precision: 0.9459
- Recall: 0.9537
- F1: 0.9498
- Accuracy: 0.9911
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0
- Datasets 1.18.3
- Tokenizers 0.11.0