Edit model card

This model is finetuend based on "mistralai/Mixtral-8x7B-v0.1" with Firefly and 48k data from ultrachat.

Evaluation

Though we finetune with only 48k data, our model can also achieve excellent performance.

Model Open LLM Leaderboard
Qwen-72B 73.6
Mixtral-8x7B-Instruct-v0.1 72.62
Firefly-Mixtral-8x7B 70.34
Yi-34B 69.42
Mixtral-8x7B-v0.1 68.42
Llama2-65B-Chat 67.87
Qwen-14B 65.86
Vicuna-33B-v1.3 58.54

Run the model

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name_or_path = 'YeungNLP/firefly-mixtral-8x7b'
max_new_tokens = 500
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.0

model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    trust_remote_code=True,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

text = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions."

inst_begin_tokens = tokenizer.encode('[INST]', add_special_tokens=False)
inst_end_tokens = tokenizer.encode('[/INST]', add_special_tokens=False)
human_tokens = tokenizer.encode(text, add_special_tokens=False)
input_ids = [tokenizer.bos_token_id] + inst_begin_tokens + human_tokens + inst_end_tokens

# input_ids = human_tokens
input_ids = torch.tensor([input_ids], dtype=torch.long).cuda()

with torch.no_grad():
    outputs = model.generate(
        input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True,
        top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty,
        eos_token_id=tokenizer.eos_token_id
    )
outputs = outputs.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs)
response = response.strip().replace(tokenizer.eos_token, "").strip()
print("Chatbot:{}".format(response))
Downloads last month
1,330
Safetensors
Model size
46.7B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for YeungNLP/firefly-mixtral-8x7b

Quantizations
3 models

Spaces using YeungNLP/firefly-mixtral-8x7b 2