llama-code / README.md
Yoshimitsujhi's picture
Upload model
fe89313
|
raw
history blame
1.88 kB
---
license: other
base_model: decapoda-research/llama-7b-hf
tags:
- generated_from_trainer
model-index:
- name: llama-code
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-code
This model is a fine-tuned version of [decapoda-research/llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5672
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float32
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 1234
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8108 | 0.36 | 50 | 1.7893 |
| 1.6505 | 0.71 | 100 | 1.5672 |
### Framework versions
- PEFT 0.6.0.dev0
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3