llama-fintech-13
This model is a fine-tuned version of decapoda-research/llama-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float32
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 1234
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4519 | 0.15 | 50 | 2.4590 |
2.2828 | 0.3 | 100 | 2.1885 |
1.9233 | 0.45 | 150 | 1.5158 |
1.6426 | 0.6 | 200 | 1.2491 |
1.6084 | 0.76 | 250 | 1.1512 |
1.5972 | 0.91 | 300 | 1.1561 |
1.5723 | 1.06 | 350 | 1.1782 |
1.5798 | 1.21 | 400 | 1.1833 |
1.566 | 1.36 | 450 | 1.1831 |
1.5625 | 1.51 | 500 | 1.1870 |
1.5514 | 1.66 | 550 | 1.1839 |
1.5381 | 1.81 | 600 | 1.1758 |
1.5518 | 1.96 | 650 | 1.1780 |
1.5321 | 2.12 | 700 | 1.1735 |
1.5406 | 2.27 | 750 | 1.1768 |
1.5275 | 2.42 | 800 | 1.1784 |
1.543 | 2.57 | 850 | 1.1788 |
1.5292 | 2.72 | 900 | 1.1851 |
1.5471 | 2.87 | 950 | 1.1820 |
1.509 | 3.02 | 1000 | 1.1858 |
1.5281 | 3.17 | 1050 | 1.1778 |
1.5146 | 3.33 | 1100 | 1.1835 |
1.5086 | 3.48 | 1150 | 1.1843 |
1.5379 | 3.63 | 1200 | 1.1854 |
1.5295 | 3.78 | 1250 | 1.1835 |
1.5185 | 3.93 | 1300 | 1.1871 |
1.5261 | 4.08 | 1350 | 1.1863 |
1.5215 | 4.23 | 1400 | 1.1873 |
1.5209 | 4.38 | 1450 | 1.1900 |
1.518 | 4.53 | 1500 | 1.1891 |
1.5287 | 4.69 | 1550 | 1.1887 |
1.5141 | 4.84 | 1600 | 1.1875 |
1.5263 | 4.99 | 1650 | 1.1889 |
Framework versions
- PEFT 0.6.0.dev0
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 8