KangalKhan-RawRuby-7B
I suggest using ChatML (Use whatever system prompt you like, this is just an example!):
<|im_start|>system
You are a friendly assistant.<|im_end|>
<|im_start|>user
Hello, what are you?<|im_end|>
<|im_start|>assistant
I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|>
Q4_K_S GGUF:
https://huggingface.co/Yuma42/KangalKhan-RawRuby-7B-GGUF
More GGUF variants by mradermacher:
WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above.
https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF
weighted/imatrix GGUF by mradermacher:
https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-i1-GGUF
KangalKhan-RawRuby-7B is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: Yuma42/KangalKhan-Ruby-7B-Fixed
layer_range: [0, 32]
- model: Yuma42/KangalKhan-RawEmerald-7B
layer_range: [0, 32]
merge_method: slerp
base_model: Yuma42/KangalKhan-Ruby-7B-Fixed
parameters:
t:
- filter: self_attn
value: [0.1, 0.55, 0.35, 0.75, 0.97]
- filter: mlp
value: [0.9, 0.45, 0.65, 0.25, 0.03]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Yuma42/KangalKhan-RawRuby-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.95 |
AI2 Reasoning Challenge (25-Shot) | 66.89 |
HellaSwag (10-Shot) | 85.53 |
MMLU (5-Shot) | 63.46 |
TruthfulQA (0-shot) | 57.09 |
Winogrande (5-shot) | 78.69 |
GSM8k (5-shot) | 62.02 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 20.38 |
IFEval (0-Shot) | 54.77 |
BBH (3-Shot) | 26.39 |
MATH Lvl 5 (4-Shot) | 5.97 |
GPQA (0-shot) | 5.03 |
MuSR (0-shot) | 7.64 |
MMLU-PRO (5-shot) | 22.48 |
- Downloads last month
- 81
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Yuma42/KangalKhan-RawRuby-7B
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.890
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.530
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.460
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.090
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.690
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard62.020
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard54.770
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard26.390
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard5.970
- acc_norm on GPQA (0-shot)Open LLM Leaderboard5.030