Edit model card

Qwen2.5-7B-Qandora-CySec

ZeroXClem/Qwen2.5-7B-Qandora-CySec is an advanced model merge combining Q&A capabilities and cybersecurity expertise using the mergekit framework. This model excels in both general question-answering tasks and specialized cybersecurity domains.

πŸ”¬ Quants

ZeroXClem/Qwen2.5-7B-Qandora-CySec quantized in GGUF format can be found here:

πŸš€ Model Components

🧩 Merge Configuration

The models are merged using spherical linear interpolation (SLERP) for optimal blending:

slices:
  - sources:
      - model: bunnycore/QandoraExp-7B
        layer_range: [0, 28]
      - model: trollek/Qwen2.5-7B-CySecButler-v0.1
        layer_range: [0, 28]
merge_method: slerp
base_model: bunnycore/QandoraExp-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Key Parameters

  • Self-Attention (self_attn): Controls blending across self-attention layers
  • MLP: Adjusts Multi-Layer Perceptron balance
  • Global Weight (t.value): 0.5 for equal contribution from both models
  • Data Type: bfloat16 for efficiency and precision

🎯 Applications

  1. General Q&A Tasks
  2. Cybersecurity Analysis
  3. Hybrid Scenarios (general knowledge + cybersecurity)

Ollama Model Card

The GGUF quantized versions can be used directly in Ollama using the following model card. Simple save as Modelfile in the same directory.

FROM ./qwen2.5-7b-qandora-cysec-q5_0.gguf  # Change to your specific quant

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
PARAMETER top_k 20

TEMPLATE """{{ if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{ .System }}
{{- if .Tools }}

# Tools

You are provided with function signatures within <tools></tools> XML tags:
<tools>{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}{{- end }}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}"""

# set the system message
SYSTEM """You are Qwen, merged by ZeroXClem. As such, you are a high quality assistant that excels in general question-answering tasks, code generation, and specialized cybersecurity domains."""

Then create the ollama model by running:

ollama create qwen2.5-7B-qandora-cysec -f Modelfile

Once completed, you can run your ollama model by:

ollama run qwen2.5-7B-qandora-cysec

πŸ›  Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "ZeroXClem/Qwen2.5-7B-Qandora-CySec"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

input_text = "What are the fundamentals of python programming?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)

πŸ“œ License

This model inherits the licenses of its base models. Refer to bunnycore/QandoraExp-7B and trollek/Qwen2.5-7B-CySecButler-v0.1 for usage terms.

πŸ™ Acknowledgements

  • bunnycore (QandoraExp-7B)
  • trollek (Qwen2.5-7B-CySecButler-v0.1)
  • mergekit project

πŸ“š Citation

If you use this model, please cite this repository and the original base models.

πŸ’‘ Tags

merge, mergekit, lazymergekit, bunnycore/QandoraExp-7B, trollek/Qwen2.5-7B-CySecButler-v0.1, cybersecurity, Q&A

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 30.95
IFEval (0-Shot) 67.73
BBH (3-Shot) 36.26
MATH Lvl 5 (4-Shot) 22.89
GPQA (0-shot) 6.71
MuSR (0-shot) 13.41
MMLU-PRO (5-shot) 38.72
Downloads last month
48
Safetensors
Model size
7.62B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZeroXClem/Qwen2.5-7B-Qandora-CySec

Collections including ZeroXClem/Qwen2.5-7B-Qandora-CySec

Evaluation results